BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33514775)

  • 1. Study of mouse behavior in different gravity environments.
    Shimomura M; Yumoto A; Ota-Murakami N; Kudo T; Shirakawa M; Takahashi S; Morita H; Shiba D
    Sci Rep; 2021 Jan; 11(1):2665. PubMed ID: 33514775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crickets in space.
    Horn E; Boser S; Forster S; Riewe P; Sebastian C; Agricola H
    Acta Astronaut; 2001; 49(3-10):345-63. PubMed ID: 11669122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.
    Morita H; Obata K; Abe C; Shiba D; Shirakawa M; Kudo T; Takahashi S
    PLoS One; 2015; 10(7):e0133981. PubMed ID: 26221724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The brain in micro- and hypergravity: the effects of changing gravity on the brain electrocortical activity.
    Marušič U; Meeusen R; Pišot R; Kavcic V
    Eur J Sport Sci; 2014; 14(8):813-22. PubMed ID: 24734884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Local Gravity Compensation on Motor Control During Altered Environmental Gravity.
    Kunavar T; Jamšek M; Barbiero M; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750267. PubMed ID: 34744639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crickets in space: morphological, physiological and behavioral alterations induced by space flight and hypergravity.
    Horn E; Agricola H; Boser S; Forster S; Kamper G; Riewe P; Sebastian C
    Adv Space Res; 2002; 30(4):819-28. PubMed ID: 12530388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses across the gravity continuum: hypergravity to microgravity.
    Wade CE
    Adv Space Biol Med; 2005; 10():225-45. PubMed ID: 16101110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgravity decreases and hypergravity increases exhaled nitric oxide.
    Karlsson LL; Kerckx Y; Gustafsson LE; Hemmingsson TE; Linnarsson D
    J Appl Physiol (1985); 2009 Nov; 107(5):1431-7. PubMed ID: 19745185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Readaptation of the vestibuloocular reflex to 1g-condition in immature lower vertebrates (Xenopus laevis) after micro- or hypergravity exposure.
    Sebastian C; Horn E; Esseling K; Neubert J
    Acta Astronaut; 1995; 36(8-12):487-503. PubMed ID: 11540981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in metabolism and vestibular function depend on gravitational load in mice.
    Abe C; Katayama C; Horii K; Okada R; Kamimura D; Nin F; Morita H
    J Appl Physiol (1985); 2023 Jan; 134(1):10-17. PubMed ID: 36395381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of microgravity and hypergravity on free-running circadian rhythm of the desert beetle Trigonoscelis gigas Reitt.
    Alpatov AM; Rietveld WJ; Oryntaeva LB
    Biol Rhythm Res; 1994 Apr; 25(2):168-77. PubMed ID: 11541428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment.
    Morita H; Kaji H; Ueta Y; Abe C
    J Physiol Sci; 2020 Mar; 70(1):17. PubMed ID: 32169037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of gravity on early development.
    Neubert J; Schatz A; Bromeis B; Linke-Hommes A
    Adv Space Res; 1998; 22(2):265-71. PubMed ID: 11541404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of gravity on the circadian timing system.
    Fuller CA; Hoban-Higgins TM; Griffin DW; Murakami DM
    Adv Space Res; 1994; 14(8):399-408. PubMed ID: 11537948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common fruitfly.
    Hill RJ; Larkin OJ; Dijkstra CE; Manzano AI; de Juan E; Davey MR; Anthony P; Eaves L; Medina FJ; Marco R; Herranz R
    J R Soc Interface; 2012 Jul; 9(72):1438-49. PubMed ID: 22219396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism.
    Soga K; Wakabayashi K; Hoson T; Kamisaka S
    Adv Space Res; 2001; 27(5):1011-6. PubMed ID: 11596631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies toward birth and early mammalian development in space.
    Ronca AE
    Adv Space Res; 2003; 32(8):1483-90. PubMed ID: 15000095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravitational Experimental Platform for Animal Models, a New Platform at ESA's Terrestrial Facilities to Study the Effects of Micro- and Hypergravity on Aquatic and Rodent Animal Models.
    Bonnefoy J; Ghislin S; Beyrend J; Coste F; Calcagno G; Lartaud I; Gauquelin-Koch G; Poussier S; Frippiat JP
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogenesis of mammals and gravity.
    Serova LV
    J Gravit Physiol; 2004 Jul; 11(2):P161-4. PubMed ID: 16237823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells.
    Rösner H; Wassermann T; Möller W; Hanke W
    Protoplasma; 2006 Dec; 229(2-4):225-34. PubMed ID: 17180506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.