These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 33514943)

  • 21. The upstream 5' splice site remains associated to the transcription machinery during intron synthesis.
    Leader Y; Lev Maor G; Sorek M; Shayevitch R; Hussein M; Hameiri O; Tammer L; Zonszain J; Keydar I; Hollander D; Meshorer E; Ast G
    Nat Commun; 2021 Jul; 12(1):4545. PubMed ID: 34315864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coordination between transcription and pre-mRNA processing.
    Cramer P; Srebrow A; Kadener S; Werbajh S; de la Mata M; Melen G; Nogués G; Kornblihtt AR
    FEBS Lett; 2001 Jun; 498(2-3):179-82. PubMed ID: 11412852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns.
    Niwa M; Berget SM
    Genes Dev; 1991 Nov; 5(11):2086-95. PubMed ID: 1657710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.
    Carrillo Oesterreich F; Preibisch S; Neugebauer KM
    Mol Cell; 2010 Nov; 40(4):571-81. PubMed ID: 21095587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequencing.
    Long Y; Jia J; Mo W; Jin X; Zhai J
    Nat Protoc; 2021 Sep; 16(9):4355-4381. PubMed ID: 34331052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
    Brody Y; Neufeld N; Bieberstein N; Causse SZ; Böhnlein EM; Neugebauer KM; Darzacq X; Shav-Tal Y
    PLoS Biol; 2011 Jan; 9(1):e1000573. PubMed ID: 21264352
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.
    Soboleva TA; Parker BJ; Nekrasov M; Hart-Smith G; Tay YJ; Tng WQ; Wilkins M; Ryan D; Tremethick DJ
    PLoS Genet; 2017 Feb; 13(2):e1006633. PubMed ID: 28234895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of Mammalian Nascent RNA for Long Read Sequencing.
    Reimer KA; Neugebauer KM
    Curr Protoc Mol Biol; 2020 Dec; 133(1):e128. PubMed ID: 33085989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The link between mRNA processing and transcription: communication works both ways.
    Zorio DA; Bentley DL
    Exp Cell Res; 2004 May; 296(1):91-7. PubMed ID: 15120999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription and RNA-processing in fission yeast mitochondria.
    Schäfer B; Hansen M; Lang BF
    RNA; 2005 May; 11(5):785-95. PubMed ID: 15811919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Splice site skipping in polyomavirus late pre-mRNA processing.
    Luo Y; Carmichael GG
    J Virol; 1991 Dec; 65(12):6637-44. PubMed ID: 1719232
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing.
    Goldstrohm AC; Greenleaf AL; Garcia-Blanco MA
    Gene; 2001 Oct; 277(1-2):31-47. PubMed ID: 11602343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis.
    Reimer KA; Mimoso CA; Adelman K; Neugebauer KM
    Mol Cell; 2021 Mar; 81(5):998-1012.e7. PubMed ID: 33440169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.
    Listerman I; Sapra AK; Neugebauer KM
    Nat Struct Mol Biol; 2006 Sep; 13(9):815-22. PubMed ID: 16921380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative analysis of nascent RNA sequencing methods and their applications in studies of cotranscriptional splicing dynamics.
    Liu M; Zhu J; Huang H; Chen Y; Dong Z
    Plant Cell; 2023 Nov; 35(12):4304-4324. PubMed ID: 37708036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.
    Khodor YL; Menet JS; Tolan M; Rosbash M
    RNA; 2012 Dec; 18(12):2174-86. PubMed ID: 23097425
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upstream introns influence the efficiency of final intron removal and RNA 3'-end formation.
    Nesic D; Maquat LE
    Genes Dev; 1994 Feb; 8(3):363-75. PubMed ID: 7906237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome-wide kinetic profiling of pre-mRNA 3' end cleavage.
    Torres-Ulloa L; Calvo-Roitberg E; Pai AA
    RNA; 2024 Feb; 30(3):256-270. PubMed ID: 38164598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo expression of the nucleolar group I intron-encoded I-dirI homing endonuclease involves the removal of a spliceosomal intron.
    Vader A; Nielsen H; Johansen S
    EMBO J; 1999 Feb; 18(4):1003-13. PubMed ID: 10022842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide.
    Nojima T; Gomes T; Carmo-Fonseca M; Proudfoot NJ
    Nat Protoc; 2016 Mar; 11(3):413-28. PubMed ID: 26844429
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.