These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 33515122)
1. Holographic patient tracking after bed movement for augmented reality neuronavigation using a head-mounted display. Fick T; van Doormaal JAM; Hoving EW; Regli L; van Doormaal TPC Acta Neurochir (Wien); 2021 Apr; 163(4):879-884. PubMed ID: 33515122 [TBL] [Abstract][Full Text] [Related]
2. Clinical Accuracy of Holographic Navigation Using Point-Based Registration on Augmented-Reality Glasses. van Doormaal TPC; van Doormaal JAM; Mensink T Oper Neurosurg (Hagerstown); 2019 Dec; 17(6):588-593. PubMed ID: 31081883 [TBL] [Abstract][Full Text] [Related]
3. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique. Besharati Tabrizi L; Mahvash M J Neurosurg; 2015 Jul; 123(1):206-11. PubMed ID: 25748303 [TBL] [Abstract][Full Text] [Related]
4. Current Accuracy of Augmented Reality Neuronavigation Systems: Systematic Review and Meta-Analysis. Fick T; van Doormaal JAM; Hoving EW; Willems PWA; van Doormaal TPC World Neurosurg; 2021 Feb; 146():179-188. PubMed ID: 33197631 [TBL] [Abstract][Full Text] [Related]
5. Validation of real-time inside-out tracking and depth realization technologies for augmented reality-based neuronavigation. Dho YS; Lee BC; Moon HC; Kim KM; Kang H; Lee EJ; Kim MS; Kim JW; Kim YH; Park SJ; Park CK Int J Comput Assist Radiol Surg; 2024 Jan; 19(1):15-25. PubMed ID: 37442869 [TBL] [Abstract][Full Text] [Related]
6. Augmented Reality in Transsphenoidal Surgery. Carl B; Bopp M; Voellger B; Saß B; Nimsky C World Neurosurg; 2019 May; 125():e873-e883. PubMed ID: 30763743 [TBL] [Abstract][Full Text] [Related]
7. Holographic mixed-reality neuronavigation with a head-mounted device: technical feasibility and clinical application. Qi Z; Li Y; Xu X; Zhang J; Li F; Gan Z; Xiong R; Wang Q; Zhang S; Chen X Neurosurg Focus; 2021 Aug; 51(2):E22. PubMed ID: 34333462 [TBL] [Abstract][Full Text] [Related]
8. Augmented reality navigation for spinal pedicle screw instrumentation using intraoperative 3D imaging. Müller F; Roner S; Liebmann F; Spirig JM; Fürnstahl P; Farshad M Spine J; 2020 Apr; 20(4):621-628. PubMed ID: 31669611 [TBL] [Abstract][Full Text] [Related]
9. The Feasibility and Accuracy of Holographic Navigation with Laser Crosshair Simulator Registration on a Mixed-Reality Display. Qi Z; Jin H; Wang Q; Gan Z; Xiong R; Zhang S; Liu M; Wang J; Ding X; Chen X; Zhang J; Nimsky C; Bopp MHA Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339612 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional-printed marker-based augmented reality neuronavigation: a new neuronavigation technique. Yavas G; Caliskan KE; Cagli MS Neurosurg Focus; 2021 Aug; 51(2):E20. PubMed ID: 34333464 [TBL] [Abstract][Full Text] [Related]
11. Presurgical Planning for Supratentorial Lesions with Free Slicer Software and Sina App. Chen JG; Han KW; Zhang DF; Li ZX; Li YM; Hou LJ World Neurosurg; 2017 Oct; 106():193-197. PubMed ID: 28673889 [TBL] [Abstract][Full Text] [Related]
12. Frameless Patient Tracking With Adhesive Optical Skin Markers for Augmented Reality Surgical Navigation in Spine Surgery. Burström G; Nachabe R; Homan R; Hoppenbrouwers J; Holthuizen R; Persson O; Edström E; Elmi-Terander A Spine (Phila Pa 1976); 2020 Nov; 45(22):1598-1604. PubMed ID: 32756274 [TBL] [Abstract][Full Text] [Related]
14. Augmented reality head-mounted display-based incision planning in cranial neurosurgery: a prospective pilot study. Ivan ME; Eichberg DG; Di L; Shah AH; Luther EM; Lu VM; Komotar RJ; Urakov TM Neurosurg Focus; 2021 Aug; 51(2):E3. PubMed ID: 34333466 [TBL] [Abstract][Full Text] [Related]
15. Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. Cho J; Rahimpour S; Cutler A; Goodwin CR; Lad SP; Codd P World Neurosurg; 2020 Jul; 139():186-195. PubMed ID: 32311561 [TBL] [Abstract][Full Text] [Related]
16. [Simulation and Navigation in the Neurosurgical Field Using Three-Dimensional Hholograms by Mixed Reality Devices]. Motoyama Y No Shinkei Geka; 2024 Mar; 52(2):248-253. PubMed ID: 38514113 [TBL] [Abstract][Full Text] [Related]
17. Augmented reality visualization in brain lesions: a prospective randomized controlled evaluation of its potential and current limitations in navigated microneurosurgery. Roethe AL; Rösler J; Misch M; Vajkoczy P; Picht T Acta Neurochir (Wien); 2022 Jan; 164(1):3-14. PubMed ID: 34904183 [TBL] [Abstract][Full Text] [Related]
18. Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking. Lai M; Skyrman S; Shan C; Babic D; Homan R; Edström E; Persson O; Burström G; Elmi-Terander A; Hendriks BHW; de With PHN PLoS One; 2020; 15(1):e0227312. PubMed ID: 31945082 [TBL] [Abstract][Full Text] [Related]
19. A Holographic Augmented Reality Interface for Visualizing of MRI Data and Planning of Neurosurgical Procedures. Morales Mojica CM; Velazco-Garcia JD; Pappas EP; Birbilis TA; Becker A; Leiss EL; Webb A; Seimenis I; Tsekos NV J Digit Imaging; 2021 Aug; 34(4):1014-1025. PubMed ID: 34027587 [TBL] [Abstract][Full Text] [Related]
20. Accuracy Validation of Neuronavigation Comparing Headholder-Based System with Head-Mounted Array-A Cadaveric Study. Pinggera D; Kerschbaumer J; Bauer M; Riedmann M; Conrad M; Brenner E; Thomé C; Freyschlag CF World Neurosurg; 2018 Dec; 120():e313-e317. PubMed ID: 30144604 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]