BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33515163)

  • 1. A multi-mode Wnt- and stemness-regulatory module dictated by FOXM1 and ASPM isoform I in gastric cancer.
    Hsu CC; Liao WY; Chang KY; Chan TS; Huang PJ; Chiang CT; Shan YS; Cheng LH; Liao TY; Tsai KK
    Gastric Cancer; 2021 May; 24(3):624-639. PubMed ID: 33515163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ASPM Activates Hedgehog and Wnt Signaling to Promote Small Cell Lung Cancer Stemness and Progression.
    Cheng LH; Hsu CC; Tsai HW; Liao WY; Yang PM; Liao TY; Hsieh HY; Chan TS; Tsai KK
    Cancer Res; 2023 Mar; 83(6):830-844. PubMed ID: 36638332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The differential distributions of ASPM isoforms and their roles in Wnt signaling, cell cycle progression, and pancreatic cancer prognosis.
    Hsu CC; Liao WY; Chan TS; Chen WY; Lee CT; Shan YS; Huang PJ; Hou YC; Li CR; Tsai KK
    J Pathol; 2019 Dec; 249(4):498-508. PubMed ID: 31465125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-β-catenin signaling.
    Pai VC; Hsu CC; Chan TS; Liao WY; Chuu CP; Chen WY; Li CR; Lin CY; Huang SP; Chen LT; Tsai KK
    Oncogene; 2019 Feb; 38(8):1340-1353. PubMed ID: 30266990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CD44 is functionally crucial for driving lung cancer stem cells metastasis through Wnt/β-catenin-FoxM1-Twist signaling.
    Su J; Wu S; Wu H; Li L; Guo T
    Mol Carcinog; 2016 Dec; 55(12):1962-1973. PubMed ID: 26621583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRIM28 suppresses cancer stem-like characteristics in gastric cancer cells through Wnt/β-catenin signaling pathways.
    Ning T; Zhao M; Zhang N; Wang Z; Zhang S; Liu M; Zhu S
    Exp Biol Med (Maywood); 2023 Dec; 248(23):2210-2218. PubMed ID: 38058023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FOXM1 increases hTERT protein stability and indicates poor prognosis in gastric cancer.
    Tang Q; Liu C; Zhang S; He L; Liu Y; Wang J; Zhao X; Li X
    Neoplasia; 2023 Feb; 36():100863. PubMed ID: 36528911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RORβ suppresses the stemness of gastric cancer cells by downregulating the activity of the Wnt signaling pathway.
    Wen Z; Chen M; Guo W; Guo K; Du P; Fang Y; Gao M; Wang Q
    Oncol Rep; 2021 Aug; 46(2):. PubMed ID: 34278502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silencing forkhead box M1 promotes apoptosis and autophagy through SIRT7/mTOR/IGF2 pathway in gastric cancer cells.
    Yu W; Cui X; Wan Z; Yu Y; Liu X; Jin L
    J Cell Biochem; 2018 Nov; 119(11):9090-9098. PubMed ID: 29953672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction to: A multi-mode Wnt- and stemness-regulatory module dictated by FOXM1 and ASPM isoform I in gastric cancer.
    Hsu CC; Liao WY; Chang KY; Chan TS; Huang PJ; Chiang CT; Shan YS; Cheng LH; Liao TY; Tsai KK
    Gastric Cancer; 2021 May; 24(3):640-641. PubMed ID: 33770302
    [No Abstract]   [Full Text] [Related]  

  • 11. FOXM1-induced upregulation of lncRNA OR3A4 promotes the progression of diffuse large B-cell lymphoma via Wnt/β-catenin signaling pathway.
    Meng H; Zhao B; Wang Y
    Exp Mol Pathol; 2020 Aug; 115():104451. PubMed ID: 32417392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of FoxM1 promotes differentiation of bone marrow mesenchymal stem cells into alveolar type II cells through activating Wnt/β-catenin signalling.
    Zeng M; Chen Q; Ge S; He W; Zhang L; Yi H; Lin S
    Biochem Biophys Res Commun; 2020 Jul; 528(2):311-317. PubMed ID: 32475644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-630 Suppresses Epithelial-to-Mesenchymal Transition by Regulating FoxM1 in Gastric Cancer Cells.
    Feng J; Wang X; Zhu W; Chen S; Feng C
    Biochemistry (Mosc); 2017 Jun; 82(6):707-714. PubMed ID: 28601080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of EZH2 and activation of ERRγ synergistically suppresses gastric cancer by inhibiting FOXM1 signaling pathway.
    Huang B; Mu P; Yu Y; Zhu W; Jiang T; Deng R; Feng G; Wen J; Zhu X; Deng Y
    Gastric Cancer; 2021 Jan; 24(1):72-84. PubMed ID: 32529327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aberrant ASPM expression mediated by transcriptional regulation of FoxM1 promotes the progression of gliomas.
    Zeng WJ; Cheng Q; Wen ZP; Wang JY; Chen YH; Zhao J; Gong ZC; Chen XP
    J Cell Mol Med; 2020 Sep; 24(17):9613-9626. PubMed ID: 32667745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PARI functions as a new transcriptional target of FOXM1 involved in gastric cancer development.
    Zhang Y; Ye X; Chen L; Wu Q; Gao Y; Li Y
    Int J Biol Sci; 2018; 14(5):531-541. PubMed ID: 29805304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FoxM1 and Wnt/β-catenin signaling in glioma stem cells.
    Gong A; Huang S
    Cancer Res; 2012 Nov; 72(22):5658-62. PubMed ID: 23139209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forkhead Box F2 Suppresses Gastric Cancer through a Novel FOXF2-IRF2BPL-β-Catenin Signaling Axis.
    Higashimori A; Dong Y; Zhang Y; Kang W; Nakatsu G; Ng SSM; Arakawa T; Sung JJY; Chan FKL; Yu J
    Cancer Res; 2018 Apr; 78(7):1643-1656. PubMed ID: 29374064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting Frizzled-7 Decreases Stemness and Chemotherapeutic Resistance in Gastric Cancer Cells by Suppressing Myc Expression.
    Cheng Y; Li L; Pan S; Jiang H; Jin H
    Med Sci Monit; 2019 Nov; 25():8637-8644. PubMed ID: 31733054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis.
    Zhang N; Wei P; Gong A; Chiu WT; Lee HT; Colman H; Huang H; Xue J; Liu M; Wang Y; Sawaya R; Xie K; Yung WK; Medema RH; He X; Huang S
    Cancer Cell; 2011 Oct; 20(4):427-42. PubMed ID: 22014570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.