These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 33515295)

  • 1. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops.
    Haworth M; Marino G; Loreto F; Centritto M
    Oecologia; 2021 Dec; 197(4):867-883. PubMed ID: 33515295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO
    Haworth M; Marino G; Materassi A; Raschi A; Scutt CP; Centritto M
    Sci Total Environ; 2023 Mar; 863():160908. PubMed ID: 36535478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration.
    Katul G; Manzoni S; Palmroth S; Oren R
    Ann Bot; 2010 Mar; 105(3):431-42. PubMed ID: 19995810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.
    Engineer CB; Hashimoto-Sugimoto M; Negi J; Israelsson-Nordström M; Azoulay-Shemer T; Rappel WJ; Iba K; Schroeder JI
    Trends Plant Sci; 2016 Jan; 21(1):16-30. PubMed ID: 26482956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From one side to two sides: the effects of stomatal distribution on photosynthesis.
    Xiong D; Flexas J
    New Phytol; 2020 Dec; 228(6):1754-1766. PubMed ID: 32652573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal conductance limited the CO
    Baca Cabrera JC; Hirl RT; Schäufele R; Macdonald A; Schnyder H
    BMC Biol; 2021 Mar; 19(1):50. PubMed ID: 33757496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From reproduction to production, stomata are the master regulators.
    Brodribb TJ; Sussmilch F; McAdam SAM
    Plant J; 2020 Feb; 101(4):756-767. PubMed ID: 31596990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Links between environment and stomatal size through evolutionary time in Proteaceae.
    Jordan GJ; Carpenter RJ; Holland BR; Beeton NJ; Woodhams MD; Brodribb TJ
    Proc Biol Sci; 2020 Jan; 287(1919):20192876. PubMed ID: 31992170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth, physiology, and stomatal parameters of plant polyploids grown under ice age, present-day, and future CO
    Šmarda P; Klem K; Knápek O; Veselá B; Veselá K; Holub P; Kuchař V; Šilerová A; Horová L; Bureš P
    New Phytol; 2023 Jul; 239(1):399-414. PubMed ID: 37167007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum.
    Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA
    PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels.
    Hu JJ; Xing YW; Turkington R; Jacques FM; Su T; Huang YJ; Zhou ZK
    Ann Bot; 2015 Apr; 115(5):777-88. PubMed ID: 25681824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.
    Yan W; Zhong Y; Shangguan Z
    Glob Chang Biol; 2017 Sep; 23(9):3781-3793. PubMed ID: 28181733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the Molecular Mechanisms of CO
    Zhang J; De-Oliveira-Ceciliato P; Takahashi Y; Schulze S; Dubeaux G; Hauser F; Azoulay-Shemer T; Tõldsepp K; Kollist H; Rappel WJ; Schroeder JI
    Curr Biol; 2018 Dec; 28(23):R1356-R1363. PubMed ID: 30513335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal function, density and pattern, and CO
    Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J
    Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speedy stomata of a C
    Silva-Alvim FAL; Alvim JC; Harvey A; Blatt MR
    Plant Cell Environ; 2024 Mar; 47(3):817-831. PubMed ID: 38013592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guard Cell Metabolism and Stomatal Function.
    Lawson T; Matthews J
    Annu Rev Plant Biol; 2020 Apr; 71():273-302. PubMed ID: 32155341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World.
    Bertolino LT; Caine RS; Gray JE
    Front Plant Sci; 2019; 10():225. PubMed ID: 30894867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The why and how of sunken stomata: does the behaviour of encrypted stomata and the leaf cuticle matter?
    Šantrůček J
    Ann Bot; 2022 Sep; 130(3):285-300. PubMed ID: 35452520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?
    Franks PJ; Britton-Harper ZJ
    New Phytol; 2016 Aug; 211(3):819-27. PubMed ID: 27214852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.