BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33515581)

  • 41. Removal of humic acid from aqueous solution using polyacrylamide/chitosan semi-IPN hydrogel.
    Liu Z; Zhou S
    Water Sci Technol; 2017 Apr; 2017(1):16-26. PubMed ID: 29698217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Estrogen adsorption from an aqueous solution on the chitosan nanoparticles.
    Davarnejad R; Sarvmeili K; Safari Z; Kennedy JF
    Int J Biol Macromol; 2023 May; 237():124224. PubMed ID: 36990402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).
    Zhou Y; Fu S; Zhang L; Zhan H; Levit MV
    Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficiency of magnetic chitosan supported on graphene for removal of perchlorate ions from wastewater.
    Jodeh S; Shawahny M; Hanbali G; Jodeh D; Dagdag O
    Environ Technol; 2021 Mar; 42(7):1119-1131. PubMed ID: 31423913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The efficient removal of methylene blue from water samples using three-dimensional poly (vinyl alcohol)/starch nanofiber membrane as a green nanosorbent.
    Moradi E; Ebrahimzadeh H; Mehrani Z; Asgharinezhad AA
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):35071-35081. PubMed ID: 31673970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preparation of supported chitosan adsorbent with high adsorption capacity for Titan Yellow removal.
    Shi QX; Li Y; Wang L; Wang J; Cao YL
    Int J Biol Macromol; 2020 Jun; 152():449-455. PubMed ID: 32112838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of As(V) from Aqueous Solution on Chitosan-Modified Diatomite.
    Yang Q; Gong L; Huang L; Xie Q; Zhong Y; Chen N
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31936426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads.
    Çınar S; Kaynar ÜH; Aydemir T; Çam Kaynar S; Ayvacıklı M
    Int J Biol Macromol; 2017 Mar; 96():459-465. PubMed ID: 28013011
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis, characterization, and assessment of cationic and anionic dye adsorption performance of functionalized silica immobilized chitosan bio-polymer.
    Jabli M
    Int J Biol Macromol; 2020 Jun; 153():305-316. PubMed ID: 32126203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetic and adsorption isotherm studies of Malachite Green dye onto surfactant-tailored alginate hydrogel beads: An influence of surfactant hydrophobicity.
    Malik SA; Dar AA; Banday JA
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130318. PubMed ID: 38408581
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation.
    Chatterjee S; Chatterjee T; Lim SR; Woo SH
    Environ Technol; 2011 Oct; 32(13-14):1503-14. PubMed ID: 22329141
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and cationic dye biosorption properties of a novel low-cost adsorbent: coconut waste modified with acrylic and polyacrylic acids.
    Kocaman S
    Int J Phytoremediation; 2020; 22(5):551-566. PubMed ID: 32202132
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of cross-linking chitosan-PVA composite hydrogel and adsorption of Cu(II) ions.
    Song Q; Gao J; Lin Y; Zhang Z; Xiang Y
    Water Sci Technol; 2020 Mar; 81(5):1063-1070. PubMed ID: 32541122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient removal of Pb(II) using modified chitosan Schiff base@Fe/NiFe.
    Jasim SA; Hachem K; Abdelbasset WK; Yasin G; Suksatan W; Chem C
    Int J Biol Macromol; 2022 Apr; 204():644-651. PubMed ID: 35093438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient water decontamination using layered double hydroxide beads nanocomposites.
    El Rouby WMA; El-Dek SI; Goher ME; Noaemy SG
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):18985-19003. PubMed ID: 30280341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye.
    Wan X; Rong Z; Zhu K; Wu Y
    Int J Biol Macromol; 2022 Dec; 222(Pt A):725-735. PubMed ID: 36174861
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Could organoclay be used as a promising natural adsorbent for efficient and cost-effective dye wastewater treatment?
    Keshmiri-Naqab R; Taghavijeloudar M
    J Environ Manage; 2023 Sep; 342():118322. PubMed ID: 37311346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient treatment of palladium from wastewater by acrolein cross-linked chitosan hydrogels: Adsorption, kinetics, and mechanisms.
    Li Y; Xie L; Qu G; Zhang H; Dai Y; Tan J; Zhong J; Zhang YF
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):127850. PubMed ID: 37924908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulfonated graphene oxide impregnated cellulose acetate floated beads for adsorption of methylene blue dye: optimization using response surface methodology.
    Basha IK; Abd El-Monaem EM; Khalifa RE; Omer AM; Eltaweil AS
    Sci Rep; 2022 Jun; 12(1):9339. PubMed ID: 35660768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-linked succinyl chitosan as an adsorbent for the removal of Methylene Blue from aqueous solution.
    Huang XY; Bu HT; Jiang GB; Zeng MH
    Int J Biol Macromol; 2011 Nov; 49(4):643-51. PubMed ID: 21741398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.