These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

803 related articles for article (PubMed ID: 33515604)

  • 1. A level set method based on domain transformation and bias correction for MRI brain tumor segmentation.
    Khosravanian A; Rahmanimanesh M; Keshavarzi P; Mozaffari S
    J Neurosci Methods; 2021 Mar; 352():109091. PubMed ID: 33515604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast level set method for glioma brain tumor segmentation based on Superpixel fuzzy clustering and lattice Boltzmann method.
    Khosravanian A; Rahmanimanesh M; Keshavarzi P; Mozaffari S
    Comput Methods Programs Biomed; 2021 Jan; 198():105809. PubMed ID: 33130495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust generative asymmetric GMM for brain MR image segmentation.
    Ji Z; Xia Y; Zheng Y
    Comput Methods Programs Biomed; 2017 Nov; 151():123-138. PubMed ID: 28946994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.
    Chen Y; Zhao B; Zhang J; Zheng Y
    Magn Reson Imaging; 2014 Sep; 32(7):941-55. PubMed ID: 24832358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active contours driven by local and global fitted image models for image segmentation robust to intensity inhomogeneity.
    Akram F; Garcia MA; Puig D
    PLoS One; 2017; 12(4):e0174813. PubMed ID: 28376124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An active contour model for the segmentation of images with intensity inhomogeneities and bias field estimation.
    Huang C; Zeng L
    PLoS One; 2015; 10(3):e0120399. PubMed ID: 25837416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Global Inhomogeneous Intensity Clustering- (GINC-) Based Active Contour Model for Image Segmentation and Bias Correction.
    Feng C; Yang J; Lou C; Li W; Yu K; Zhao D
    Comput Math Methods Med; 2020; 2020():7595174. PubMed ID: 32565883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation.
    Li C; Gore JC; Davatzikos C
    Magn Reson Imaging; 2014 Sep; 32(7):913-23. PubMed ID: 24928302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient segmentation and correction model for brain MR images with level set framework based on basis functions.
    Yang Y; Ruan S; Wu B
    Magn Reson Imaging; 2018 Dec; 54():249-264. PubMed ID: 30193954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fast level set method for inhomogeneous image segmentation with adaptive scale parameter.
    Huang G; Ji H; Zhang W
    Magn Reson Imaging; 2018 Oct; 52():33-45. PubMed ID: 29807107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Level Set Approach to Image Segmentation With Intensity Inhomogeneity.
    Zhang K; Zhang L; Lam KM; Zhang D
    IEEE Trans Cybern; 2016 Feb; 46(2):546-57. PubMed ID: 25781973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI.
    Li C; Huang R; Ding Z; Gatenby JC; Metaxas DN; Gore JC
    IEEE Trans Image Process; 2011 Jul; 20(7):2007-16. PubMed ID: 21518662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans.
    Ibrahim RW; Hasan AM; Jalab HA
    Comput Methods Programs Biomed; 2018 Sep; 163():21-28. PubMed ID: 30119853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.
    Tang J; Jiang X
    Comput Math Methods Med; 2017; 2017():9174275. PubMed ID: 29279720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast and robust brain tumor segmentation using level set method with multiple image information.
    Lok KH; Shi L; Zhu X; Wang D
    J Xray Sci Technol; 2017; 25(2):301-312. PubMed ID: 28269819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jointly estimating bias field and reconstructing uniform MRI image by deep learning.
    Song W; Zeng C; Zhang X; Wang Z; Huang Y; Lin J; Wei W; Qu X
    J Magn Reson; 2022 Oct; 343():107301. PubMed ID: 36126552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variational level set combined with Markov random field modeling for simultaneous intensity non-uniformity correction and segmentation of MR images.
    Shahvaran Z; Kazemi K; Helfroush MS; Jafarian N; Noorizadeh N
    J Neurosci Methods; 2012 Aug; 209(2):280-9. PubMed ID: 22728688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast technique for hyper-echoic region separation from brain ultrasound images using patch based thresholding and cubic B-spline based contour smoothing.
    Chel H; Bora PK; Ramchiary KK
    Ultrasonics; 2021 Mar; 111():106304. PubMed ID: 33360770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images.
    Banerjee A; Maji P
    IEEE Trans Image Process; 2015 Dec; 24(12):5764-76. PubMed ID: 26462197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.