BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33515667)

  • 1. Robustness of daily dose for each beam angle and accumulated dose for inter-fractional anatomical changes in passive carbon-ion radiotherapy for pancreatic cancer: Bone matching versus tumor matching.
    Kubota Y; Okamoto M; Shiba S; Okazaki S; Matsui T; Li Y; Itabashi Y; Sakai M; Kubo N; Tsuda K; Ohno T; Nakano T
    Radiother Oncol; 2021 Apr; 157():85-92. PubMed ID: 33515667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive planning based on single beam optimization in passive scattering carbon ion radiotherapy for patients with pancreatic cancer.
    Li Y; Kubota Y; Okamoto M; Shiba S; Okazaki S; Matsui T; Tashiro M; Nakano T; Ohno T
    Radiat Oncol; 2021 Jun; 16(1):111. PubMed ID: 34147099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between bone matching and marker matching for evaluation of intra- and inter-fractional changes in accumulated dose of carbon ion radiotherapy for hepatocellular carcinoma.
    Kubota Y; Katoh H; Shibuya K; Shiba S; Abe S; Sakai M; Yuasa D; Tsuda K; Ohno T; Nakano T
    Radiother Oncol; 2019 Aug; 137():77-82. PubMed ID: 31078014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose assessment for patients with stage I non-small cell lung cancer receiving passive scattering carbon-ion radiotherapy using daily computed tomographic images: A prospective study.
    Li Y; Kubota Y; Kubo N; Mizukami T; Sakai M; Kawamura H; Irie D; Okano N; Tsuda K; Matsumura A; Saitoh JI; Nakano T; Ohno T
    Radiother Oncol; 2020 Mar; 144():224-230. PubMed ID: 32044421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness of patient positioning for interfractional error in carbon ion radiotherapy for stage I lung cancer: Bone matching versus tumor matching.
    Sakai M; Kubota Y; Saitoh JI; Irie D; Shirai K; Okada R; Torikoshi M; Ohno T; Nakano T
    Radiother Oncol; 2018 Oct; 129(1):95-100. PubMed ID: 29100701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four-dimensional treatment planning in layer-stacking boost irradiation for carbon-ion pancreatic therapy.
    Mori S; Shinoto M; Yamada S
    Radiother Oncol; 2014 May; 111(2):258-63. PubMed ID: 24746568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of dynamic adaptive passive scattering proton therapy with computed tomography image guidance in the lung.
    Moriya S; Tachibana H; Hotta K; Nakamura N; Sakae T; Akimoto T
    Med Phys; 2017 Sep; 44(9):4474-4481. PubMed ID: 28665491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical Note: Predicting dose distribution with replacing stopping power ratio for inter-fractional motion and intra-fractional motion during carbon ion radiotherapy with passive irradiation method for stage I lung cancer.
    Kubota Y; Sakai M; Tashiro M; Saitoh JI; Abe T; Ohno T; Nakano T
    Med Phys; 2018 Jul; 45(7):3435-3441. PubMed ID: 29757472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of patient positioning on carbon-ion therapy planned dose distribution to pancreatic tumors and organs at risk.
    Miki K; Fukahori M; Kumagai M; Yamada S; Mori S
    Phys Med; 2017 Jan; 33():38-46. PubMed ID: 28003135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beam direction arrangement using a superconducting rotating gantry in carbon ion treatment for pancreatic cancer.
    Koom WS; Mori S; Furuich W; Yamada S
    Br J Radiol; 2019 Jun; 92(1098):20190101. PubMed ID: 30943057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of the delivered treatment dose in volumetric modulated arc therapy with breath-hold for pancreatic cancer patients based on daily cone beam computed tomography images with limited field-of-view.
    Ziegler M; Nakamura M; Hirashima H; Ashida R; Yoshimura M; Bert C; Mizowaki T
    Med Phys; 2019 Jul; 46(7):2969-2977. PubMed ID: 31055859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of interfractional anatomical changes on the accumulated dose in carbon ion therapy of pancreatic cancer patients.
    Houweling AC; Fukata K; Kubota Y; Shimada H; Rasch CR; Ohno T; Bel A; van der Horst A
    Radiother Oncol; 2016 May; 119(2):319-25. PubMed ID: 26993417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the availability of single-position treatment with a rotating gantry and the validity of deformable image registration dose assessment for pancreatic cancer carbon-ion radiotherapy.
    Miyasaka Y; Kawashiro S; Lee SH; Souda H; Ichikawa M; Chai H; Ishizawa M; Ono T; Sato H; Iwai T
    J Appl Clin Med Phys; 2024 Jun; 25(6):e14330. PubMed ID: 38478368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust Beam Selection Based on Water Equivalent Thickness Analysis in Passive Scattering Carbon-Ion Radiotherapy for Pancreatic Cancer.
    Zhou Y; Sakai M; Li Y; Kubota Y; Okamoto M; Shiba S; Okazaki S; Matsui T; Ohno T
    Cancers (Basel); 2023 Apr; 15(9):. PubMed ID: 37173985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric impact of simulated changes in large bowel content during proton therapy with simultaneous integrated boost for locally advanced pancreatic cancer.
    Narita Y; Kato T; Takemasa K; Sato H; Ikeda T; Harada T; Oyama S; Murakami M
    J Appl Clin Med Phys; 2021 Nov; 22(11):90-98. PubMed ID: 34599856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gated carbon-ion scanning treatment for pancreatic tumour with field specific target volume and organs at risk.
    Miki K; Mori S; Shiomi M; Yamada S
    Phys Med; 2016 Dec; 32(12):1521-1528. PubMed ID: 27884463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfractional dose variations in intensity-modulated radiotherapy with breath-hold for pancreatic cancer.
    Nakamura M; Shibuya K; Nakamura A; Shiinoki T; Matsuo Y; Nakata M; Sawada A; Mizowaki T; Hiraoka M
    Int J Radiat Oncol Biol Phys; 2012 Apr; 82(5):1619-26. PubMed ID: 21477941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Planning strategies for inter-fractional robustness in pancreatic patients treated with scanned carbon therapy.
    Batista V; Richter D; Combs SE; Jäkel O
    Radiat Oncol; 2017 Jun; 12(1):94. PubMed ID: 28595643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of multiple anatomical scenarios in plan optimization for carbon ion radiotherapy of pancreatic cancer.
    Molinelli S; Vai A; Russo S; Loap P; Meschini G; Paganelli C; Barcellini A; Vitolo V; Orlandi E; Ciocca M
    Radiother Oncol; 2022 Nov; 176():1-8. PubMed ID: 36113776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfractional robustness of scanning carbon ion radiotherapy for prostate cancer: An analysis based on dose distribution from daily in-room CT images.
    Tsuchida K; Minohara S; Kusano Y; Kano K; Anno W; Takakusagi Y; Mizoguchi N; Serizawa I; Yoshida D; Imura K; Takayama Y; Kamada T; Katoh H; Ohno T
    J Appl Clin Med Phys; 2021 Jun; 22(6):130-138. PubMed ID: 34046997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.