These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 33515815)
1. Shell form and enzymatic alterations in Lottia subrugosa (Gastropoda, Lotiidae) transplanted to a contaminated site. Harayashiki CAY; Sadauskas-Henrique H; de Souza-Bastos LR; Gouveia N; Pont GD; Ostrensky A; Castro IB Mar Pollut Bull; 2021 Mar; 164():112075. PubMed ID: 33515815 [TBL] [Abstract][Full Text] [Related]
2. Historical shell form variation in Lottia subrugosa from southeast Brazilian coast: Possible responses to anthropogenic pressures. Harayashiki CAY; Martins CP; Márquez F; Bigatti G; Castro ÍB Mar Pollut Bull; 2020 Jun; 155():111180. PubMed ID: 32469786 [TBL] [Abstract][Full Text] [Related]
3. Contamination gradient affects differently carbonic anhydrase activity of mollusks depending on their feeding habits. Harayashiki CAY; Sadauskas-Henrique H; de Souza-Bastos LR; Gouveia N; Luna AJ; Ostrensky A; Castro IB Ecotoxicology; 2022 Jan; 31(1):124-133. PubMed ID: 34748161 [TBL] [Abstract][Full Text] [Related]
4. Can shell alterations in limpets be used as alternative biomarkers of coastal contamination? Gouveia N; Oliveira CRM; Martins CP; Maranho LA; Seabra Pereira CD; de Orte MR; Harayashiki CAY; Almeida SM; Castro IB Chemosphere; 2019 Jun; 224():9-19. PubMed ID: 30802781 [TBL] [Abstract][Full Text] [Related]
5. Mollusc shell shape as pollution biomarkers: Which is the best biological model? Gouveia N; Harayashiki CAY; Márquez F; Lourenço RA; Taniguchi S; Castro IB Mar Pollut Bull; 2022 Jun; 179():113663. PubMed ID: 35462102 [TBL] [Abstract][Full Text] [Related]
6. Shell alterations in limpets as putative biomarkers for multi-impacted coastal areas. Begliomini FN; Maciel DC; de Almeida SM; Abessa DM; Maranho LA; Pereira CS; Yogui GT; Zanardi-Lamardo E; Castro ÍB Environ Pollut; 2017 Jul; 226():494-503. PubMed ID: 28442267 [TBL] [Abstract][Full Text] [Related]
7. Mollusk shell alterations resulting from coastal contamination and other environmental factors. Harayashiki CAY; Márquez F; Cariou E; Castro ÍB Environ Pollut; 2020 Oct; 265(Pt B):114881. PubMed ID: 32505962 [TBL] [Abstract][Full Text] [Related]
8. Identification of two carbonic anhydrases in the mantle of the European Abalone Haliotis tuberculata (Gastropoda, Haliotidae): phylogenetic implications. LE Roy N; Marie B; Gaume B; Guichard N; Delgado S; Zanella-Cléon I; Becchi M; Auzoux-Bordenave S; Sire JY; Marin F J Exp Zool B Mol Dev Evol; 2012 Jul; 318(5):353-67. PubMed ID: 22711568 [TBL] [Abstract][Full Text] [Related]
9. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. Marie B; Jackson DJ; Ramos-Silva P; Zanella-Cléon I; Guichard N; Marin F FEBS J; 2013 Jan; 280(1):214-32. PubMed ID: 23145877 [TBL] [Abstract][Full Text] [Related]
10. Chemical contamination in coastal areas alters shape, resistance and composition of carnivorous gastropod shells. Gouveia N; Oliveira AJLA; Yokota Harayashiki CA; Souza JC; Longo E; Cano NF; Maltez HF; Lourenço RA; Turpo-Huahuasoncco KV; Castro ÍB Chemosphere; 2022 Nov; 307(Pt 2):135926. PubMed ID: 35934096 [TBL] [Abstract][Full Text] [Related]
11. Purification and functional analysis of the shell matrix protein N66 from the shell of the pearl oyster Pteria sterna. Rivera-Perez C; Ojeda-Ramirez de Areyano JJ; Hernandez-Saavedra NY Comp Biochem Physiol B Biochem Mol Biol; 2019 Sep; 235():19-29. PubMed ID: 31129291 [TBL] [Abstract][Full Text] [Related]
12. CARBONIC ANHYDRASE IN THE MAMILLAE OF THE HEN'S EGG SHELL. DIAMANTSTEIN T; BRONSCH K; SCHLUENS J Nature; 1964 Jul; 203():88-9. PubMed ID: 14197361 [No Abstract] [Full Text] [Related]
13. A shell-formation related carbonic anhydrase in Crassostrea gigas modulates intracellular calcium against CO Wang X; Wang M; Jia Z; Song X; Wang L; Song L Aquat Toxicol; 2017 Aug; 189():216-228. PubMed ID: 28666131 [TBL] [Abstract][Full Text] [Related]
14. [Intervention of carbonic anhydrase in the mechanism of perforation of the lamellibranchs valves by Purpura (Thais) lapillus L. (Gastropoda Prosobrancha Muricida) ]. Rosenberg AJ; Chétail M; Fournie J C R Acad Hebd Seances Acad Sci D; 1968 Feb; 266(9):944-7. PubMed ID: 4968266 [No Abstract] [Full Text] [Related]
16. Gonad characterization and reproductive cycle of Collisella subrugosa (Orbigny, 1846) (Gastropoda: Acmaeidae) in the northeastern Brazil. Rocha-Barreira CA Braz J Biol; 2002 Nov; 62(4B):885-95. PubMed ID: 12659041 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of impacted Brazilian estuaries using the native oyster Crassostrea rhizophorae: Branchial carbonic anhydrase as a biomarker. Azevedo-Linhares M; Freire CA Ecotoxicol Environ Saf; 2015 Dec; 122():483-9. PubMed ID: 26410193 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a novel carbonic anhydrase from freshwater pearl mussel Hyriopsis cumingii and the expression profile of its transcript in response to environmental conditions. Ren G; Wang Y; Qin J; Tang J; Zheng X; Li Y Gene; 2014 Aug; 546(1):56-62. PubMed ID: 24853200 [TBL] [Abstract][Full Text] [Related]
19. Hemolymph and gill carbonic anhydrase are more sensitive to aquatic contamination than mantle carbonic anhydrase in the mangrove oyster Crassostrea rhizophorae. Dos Santos MB; Monteiro Neto IE; de Souza Melo SRC; Amado EM Comp Biochem Physiol C Toxicol Pharmacol; 2017 Oct; 201():19-25. PubMed ID: 28888876 [TBL] [Abstract][Full Text] [Related]
20. Mid-Neolithic exploitation of mollusks in the Guanzhong Basin of Northwestern China: preliminary results. Li F; Wu N; Lu H; Zhang J; Wang W; Ma M; Zhang X; Yang X PLoS One; 2013; 8(3):e58999. PubMed ID: 23544050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]