These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 3351589)

  • 41. Effects of fluid-percussion brain injury on regional cerebral blood flow and pial arteriolar diameter.
    DeWitt DS; Jenkins LW; Wei EP; Lutz H; Becker DP; Kontos HA
    J Neurosurg; 1986 May; 64(5):787-94. PubMed ID: 3701425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of experimental blunt head injury on acute regional cerebral blood flow and edema.
    Tornheim PA; McDermott F; Shiguma M
    Adv Neurol; 1990; 52():377-84. PubMed ID: 2396534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The 21-aminosteroid U-74389G reduces cerebral superoxide anion concentration following fluid percussion injury of the brain.
    Fabian RH; Dewitt DS; Kent TA
    J Neurotrauma; 1998 Jun; 15(6):433-40. PubMed ID: 9624628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Encephaloangioscintigraphy in the diagnosis of posttraumatic cerebral venous circulatory disorders].
    Sivachenko TP; Romanenko VA; Samsosiuk IZ; Bredikhin AV; Dzhuzha DA; Gubenko VP
    Med Radiol (Mosk); 1991; 36(3):4-7. PubMed ID: 1850063
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pentobarbital fails to reduce cerebral oxygen consumption early after non-hemorrhagic closed head injury in rats.
    De Visscher G; Rooker S; Jorens P; Verlooy J; Borgers M; Reneman RS; Van Rossem K; Flameng W
    J Neurotrauma; 2005 Jul; 22(7):793-806. PubMed ID: 16004582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cerebral energy metabolism following ESWL brain injury model and effects of cerebral protective drugs.
    Whang CJ; Kwon Y
    J Korean Med Sci; 1994 Apr; 9(2):123-34. PubMed ID: 7986387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regional brain metabolite levels following mild experimental head injury in the cat.
    Yang MS; DeWitt DS; Becker DP; Hayes RL
    J Neurosurg; 1985 Oct; 63(4):617-21. PubMed ID: 4032026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional and basal cerebral metabolic rate for oxygen (CMRO2) and its relevance to the pathogenesis and therapy of brain injury.
    Nemoto EM; Klementavicius R; Yonas H
    Adv Exp Med Biol; 1998; 454():235-42. PubMed ID: 9889897
    [No Abstract]   [Full Text] [Related]  

  • 49. [Progressive sequelae of cranio-cerebral injuries].
    Romodanov AP
    Zh Vopr Neirokhir Im N N Burdenko; 1986; (1):13-7. PubMed ID: 3008467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High energy phosphate metabolism in experimental permanent focal cerebral ischemia: an in vivo 31P magnetic resonance spectroscopy study.
    Germano IM; Pitts LH; Berry I; De Armond SJ
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):24-31. PubMed ID: 3339105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flow thresholds for cerebral energy disturbance and Na+ pump failure as studied by in vivo 31P and 23Na nuclear magnetic resonance spectroscopy.
    Naritomi H; Sasaki M; Kanashiro M; Kitani M; Sawada T
    J Cereb Blood Flow Metab; 1988 Feb; 8(1):16-23. PubMed ID: 2448321
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic changes in regional CBF, intraventricular pressure, CSF pH and lactate levels during the acute phase of head injury.
    Enevoldsen EM; Cold G; Jensen FT; Malmros R
    J Neurosurg; 1976 Feb; 44(2):191-214. PubMed ID: 1473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia.
    Crockard HA; Gadian DG; Frackowiak RS; Proctor E; Allen K; Williams SR; Russell RW
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):394-402. PubMed ID: 3611203
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study.
    Biessels GJ; Braun KP; de Graaf RA; van Eijsden P; Gispen WH; Nicolay K
    Diabetologia; 2001 Mar; 44(3):346-53. PubMed ID: 11317667
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury.
    Prins ML; Hovda DA
    J Neurotrauma; 2001 Jan; 18(1):31-46. PubMed ID: 11200248
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Injury-induced alterations in N-methyl-D-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion.
    Osteen CL; Giza CC; Hovda DA
    Neuroscience; 2004; 128(2):305-22. PubMed ID: 15350643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The simultaneous measurements of tissue oxygen concentration and energy state by near-infrared and nuclear magnetic resonance spectroscopy.
    Tamura M; Hazeki O; Nioka S; Chance B; Smith DS
    Adv Exp Med Biol; 1988; 222():359-63. PubMed ID: 3364259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of THAM on brain oedema in experimental brain injury.
    Yoshida K; Corwin F; Marmarou A
    Acta Neurochir Suppl (Wien); 1990; 51():317-9. PubMed ID: 2089927
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blood flow and oxygen consumption of the focally traumatized monkey brain.
    Martins AN; Doyle TF
    J Neurosurg; 1977 Sep; 47(3):346-52. PubMed ID: 408466
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Traumatic brain ischemia during neuro intensive care: myth rather than fact.
    Cruz J
    Arq Neuropsiquiatr; 2001 Sep; 59(3-A):479-82. PubMed ID: 11588622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.