These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33515895)

  • 1. Evaluating the environmental profiles of winter wheat rotation systems under different management strategies.
    González-García S; Almeida F; Moreira MT; Brandão M
    Sci Total Environ; 2021 May; 770():145270. PubMed ID: 33515895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing lupin in autochthonous wheat rotation systems in Galicia (NW Spain): An environmental and economic assessment.
    Rebolledo-Leiva R; Almeida-García F; Pereira-Lorenzo S; Ruíz-Nogueira B; Moreira MT; González-García S
    Sci Total Environ; 2022 Sep; 838(Pt 1):156016. PubMed ID: 35588818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental consequences of wheat-based crop rotation in potato farming systems in galicia, Spain.
    Câmara-Salim I; Almeida-García F; Feijoo G; Moreira MT; González-García S
    J Environ Manage; 2021 Jun; 287():112351. PubMed ID: 33735673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental and economic benefits of wheat and chickpea crop rotation in the Mediterranean region of Apulia (Italy).
    Lago-Olveira S; Rebolledo-Leiva R; Garofalo P; Moreira MT; González-García S
    Sci Total Environ; 2023 Oct; 896():165124. PubMed ID: 37364835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the environmental and economic implications of lupin cultivation in wheat-based organic rotation systems in Galicia, Spain.
    Rebolledo-Leiva R; Almeida-García F; Pereira-Lorenzo S; Ruíz-Nogueira B; Moreira MT; González-García S
    Sci Total Environ; 2022 Nov; 845():157342. PubMed ID: 35842156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle assessment of autochthonous varieties of wheat and artisanal bread production in Galicia, Spain.
    Câmara-Salim I; Almeida-García F; González-García S; Romero-Rodríguez A; Ruíz-Nogueiras B; Pereira-Lorenzo S; Feijoo G; Moreira MT
    Sci Total Environ; 2020 Apr; 713():136720. PubMed ID: 32019049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life cycle assessment of wheat production and wheat-based crop rotations.
    Shrestha P; Karim RA; Sieverding HL; Archer DW; Kumar S; Nleya T; Graham CJ; Stone JJ
    J Environ Qual; 2020 Nov; 49(6):1515-1529. PubMed ID: 33150625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life Cycle Thinking for the environmental and financial assessment of rice management systems in the Senegal River Valley.
    Escobar N; Bautista I; Peña N; Fenollosa ML; Osca JM; Sanjuán N
    J Environ Manage; 2022 May; 310():114722. PubMed ID: 35217446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adapting crop rotations to climate change in regional impact modelling assessments.
    Teixeira EI; de Ruiter J; Ausseil AG; Daigneault A; Johnstone P; Holmes A; Tait A; Ewert F
    Sci Total Environ; 2018 Mar; 616-617():785-795. PubMed ID: 29103648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental impacts of different crop rotations in terms of soil compaction.
    Götze P; Rücknagel J; Jacobs A; Märländer B; Koch HJ; Christen O
    J Environ Manage; 2016 Oct; 181():54-63. PubMed ID: 27315601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitigating Groundwater Depletion in North China Plain with Cropping System that Alternate Deep and Shallow Rooted Crops.
    Yang XL; Chen YQ; Steenhuis TS; Pacenka S; Gao WS; Ma L; Zhang M; Sui P
    Front Plant Sci; 2017; 8():980. PubMed ID: 28642779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental impacts of organic and conventional agricultural products--are the differences captured by life cycle assessment?
    Meier MS; Stoessel F; Jungbluth N; Juraske R; Schader C; Stolze M
    J Environ Manage; 2015 Feb; 149():193-208. PubMed ID: 25463583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach.
    Parajuli R; Knudsen MT; Birkved M; Djomo SN; Corona A; Dalgaard T
    Sci Total Environ; 2017 Nov; 598():497-512. PubMed ID: 28448939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale.
    Pérez-Gutiérrez JD; Kumar S
    J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.
    Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D
    Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India.
    Parihar CM; Parihar MD; Sapkota TB; Nanwal RK; Singh AK; Jat SL; Nayak HS; Mahala DM; Singh LK; Kakraliya SK; Stirling CM; Jat ML
    Sci Total Environ; 2018 Nov; 640-641():1382-1392. PubMed ID: 30021305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological challenges in life cycle assessment and carbon budget of organic and conventional agroecosystems: A case from Lithuania.
    Miksa O; Chen X; Baležentienė L; Streimikiene D; Balezentis T
    Sci Total Environ; 2020 Apr; 714():136850. PubMed ID: 32018983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar potentially mitigates greenhouse gas emissions from cultivation of oilseed rape for biodiesel.
    Thers H; Djomo SN; Elsgaard L; Knudsen MT
    Sci Total Environ; 2019 Jun; 671():180-188. PubMed ID: 30928748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China.
    Li SH; Guo LJ; Cao CG; Li CF
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5742-5754. PubMed ID: 32974819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Characteristics of soil nitrate accumulation and leaching under different long-term nitrogen application rates in winter wheat and summer maize rotation system.].
    Weng LY; Yang XQ; Lyu MJ; Xin SY; Chen S; Ma WQ; Wei J
    Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2551-2558. PubMed ID: 30182594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.