BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33515912)

  • 1. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Targeted CRISPR-Cas9-Mediated Genome Editing of Multiple Homeologs in F
    Corkins ME; DeLay BD; Miller RK
    Cold Spring Harb Protoc; 2022 Mar; 2022(3):. PubMed ID: 34911820
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique.
    Tanouchi M; Igawa T; Suzuki N; Suzuki M; Hossain N; Ochi H; Ogino H
    Dev Growth Differ; 2022 May; 64(4):219-225. PubMed ID: 35338712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.
    Nakayama T; Grainger RM; Cha SW
    Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair.
    Suzuki KT; Sakane Y; Suzuki M; Yamamoto T
    Methods Mol Biol; 2018; 1865():91-103. PubMed ID: 30151761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0
    Aslan Y; Tadjuidje E; Zorn AM; Cha SW
    Development; 2017 Aug; 144(15):2852-2858. PubMed ID: 28694259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology-Directed Repair by CRISPR-Cas9 Mutagenesis in
    Nakayama T; Grainger RM; Cha SW
    Cold Spring Harb Protoc; 2022 Dec; 2022(12):606-615. PubMed ID: 35953242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system.
    Banach M; Edholm ES; Robert J
    Dev Biol; 2017 Jun; 426(2):261-269. PubMed ID: 27318386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.
    Feehan JM; Chiu CN; Stanar P; Tam BM; Ahmed SN; Moritz OL
    Sci Rep; 2017 Jul; 7(1):6920. PubMed ID: 28761125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation.
    Edmondson C; Zhou Q; Liu X
    BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9.
    Feehan JM; Stanar P; Tam BM; Chiu C; Moritz OL
    Methods Mol Biol; 2019; 1834():193-207. PubMed ID: 30324446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique.
    Tadjuidje E; Cha SW
    Methods Mol Biol; 2018; 1865():105-117. PubMed ID: 30151762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells.
    Banan M
    J Biotechnol; 2020 Jan; 308():1-9. PubMed ID: 31751596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos.
    Gu B; Gertsenstein M; Posfai E
    Methods Mol Biol; 2020; 2066():89-100. PubMed ID: 31512209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Nonmosaic Mutants in
    Cha SW
    Cold Spring Harb Protoc; 2022 Jun; 2022(6):Pdb.prot106989. PubMed ID: 34244351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling.
    Tandon P; Conlon F; Furlow JD; Horb ME
    Dev Biol; 2017 Jun; 426(2):325-335. PubMed ID: 27109192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing of Silkworms.
    Tsubota T; Sezutsu H
    Methods Mol Biol; 2017; 1630():205-218. PubMed ID: 28643261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-Specific Gene Inactivation in
    DeLay BD; Corkins ME; Hanania HL; Salanga M; Deng JM; Sudou N; Taira M; Horb ME; Miller RK
    Genetics; 2018 Feb; 208(2):673-686. PubMed ID: 29187504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.