These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33515912)

  • 1. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis.
    Kato S; Fukazawa T; Kubo T
    Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-Targeted CRISPR-Cas9-Mediated Genome Editing of Multiple Homeologs in F
    Corkins ME; DeLay BD; Miller RK
    Cold Spring Harb Protoc; 2022 Mar; 2022(3):. PubMed ID: 34911820
    [No Abstract]   [Full Text] [Related]  

  • 3. Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique.
    Tanouchi M; Igawa T; Suzuki N; Suzuki M; Hossain N; Ochi H; Ogino H
    Dev Growth Differ; 2022 May; 64(4):219-225. PubMed ID: 35338712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple embryo injection of long single-stranded donor templates with the CRISPR/Cas9 system leads to homology-directed repair in Xenopus tropicalis and Xenopus laevis.
    Nakayama T; Grainger RM; Cha SW
    Genesis; 2020 Jun; 58(6):e23366. PubMed ID: 32277804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair.
    Suzuki KT; Sakane Y; Suzuki M; Yamamoto T
    Methods Mol Biol; 2018; 1865():91-103. PubMed ID: 30151761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0
    Aslan Y; Tadjuidje E; Zorn AM; Cha SW
    Development; 2017 Aug; 144(15):2852-2858. PubMed ID: 28694259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homology-Directed Repair by CRISPR-Cas9 Mutagenesis in
    Nakayama T; Grainger RM; Cha SW
    Cold Spring Harb Protoc; 2022 Dec; 2022(12):606-615. PubMed ID: 35953242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system.
    Banach M; Edholm ES; Robert J
    Dev Biol; 2017 Jun; 426(2):261-269. PubMed ID: 27318386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Dominant and Recessive Forms of Retinitis Pigmentosa by Editing Three Rhodopsin-Encoding Genes in Xenopus Laevis Using Crispr/Cas9.
    Feehan JM; Chiu CN; Stanar P; Tam BM; Ahmed SN; Moritz OL
    Sci Rep; 2017 Jul; 7(1):6920. PubMed ID: 28761125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation.
    Edmondson C; Zhou Q; Liu X
    BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and Analysis of Xenopus laevis Models of Retinal Degeneration Using CRISPR/Cas9.
    Feehan JM; Stanar P; Tam BM; Chiu C; Moritz OL
    Methods Mol Biol; 2019; 1834():193-207. PubMed ID: 30324446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique.
    Tadjuidje E; Cha SW
    Methods Mol Biol; 2018; 1865():105-117. PubMed ID: 30151762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells.
    Banan M
    J Biotechnol; 2020 Jan; 308():1-9. PubMed ID: 31751596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos.
    Gu B; Gertsenstein M; Posfai E
    Methods Mol Biol; 2020; 2066():89-100. PubMed ID: 31512209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Nonmosaic Mutants in
    Cha SW
    Cold Spring Harb Protoc; 2022 Jun; 2022(6):Pdb.prot106989. PubMed ID: 34244351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling.
    Tandon P; Conlon F; Furlow JD; Horb ME
    Dev Biol; 2017 Jun; 426(2):325-335. PubMed ID: 27109192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Editing of Silkworms.
    Tsubota T; Sezutsu H
    Methods Mol Biol; 2017; 1630():205-218. PubMed ID: 28643261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized knock-in of point mutations in zebrafish using CRISPR/Cas9.
    Prykhozhij SV; Fuller C; Steele SL; Veinotte CJ; Razaghi B; Robitaille JM; McMaster CR; Shlien A; Malkin D; Berman JN
    Nucleic Acids Res; 2018 Sep; 46(17):e102. PubMed ID: 29905858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-Specific Gene Inactivation in
    DeLay BD; Corkins ME; Hanania HL; Salanga M; Deng JM; Sudou N; Taira M; Horb ME; Miller RK
    Genetics; 2018 Feb; 208(2):673-686. PubMed ID: 29187504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.