These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 33516013)

  • 1. Review: Methanogens and methane production in the digestive systems of nonruminant farm animals.
    Misiukiewicz A; Gao M; Filipiak W; Cieslak A; Patra AK; Szumacher-Strabel M
    Animal; 2021 Jan; 15(1):100060. PubMed ID: 33516013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows.
    Pitta D; Indugu N; Narayan K; Hennessy M
    J Dairy Sci; 2022 Oct; 105(10):8569-8585. PubMed ID: 35346473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation.
    Beauchemin KA; Ungerfeld EM; Eckard RJ; Wang M
    Animal; 2020 Mar; 14(S1):s2-s16. PubMed ID: 32024560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.
    McAllister TA; Meale SJ; Valle E; Guan LL; Zhou M; Kelly WJ; Henderson G; Attwood GT; Janssen PH
    J Anim Sci; 2015 Apr; 93(4):1431-49. PubMed ID: 26020166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.
    Leahy SC; Kelly WJ; Altermann E; Ronimus RS; Yeoman CJ; Pacheco DM; Li D; Kong Z; McTavish S; Sang C; Lambie SC; Janssen PH; Dey D; Attwood GT
    PLoS One; 2010 Jan; 5(1):e8926. PubMed ID: 20126622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review: Comparative methane production in mammalian herbivores.
    Clauss M; Dittmann MT; Vendl C; Hagen KB; Frei S; Ortmann S; Müller DWH; Hammer S; Munn AJ; Schwarm A; Kreuzer M
    Animal; 2020 Mar; 14(S1):s113-s123. PubMed ID: 32024568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Associative effects of wet distiller's grains plus solubles and tannin-rich peanut skin supplementation on in vitro rumen fermentation, greenhouse gas emissions, and microbial changes1.
    Min BR; Castleberry L; Allen H; Parker D; Waldrip H; Brauer D; Willis W
    J Anim Sci; 2019 Nov; 97(11):4668-4681. PubMed ID: 31603200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission?
    Pereira AM; de Lurdes Nunes Enes Dapkevicius M; Borba AES
    Anim Microbiome; 2022 Jan; 4(1):5. PubMed ID: 34991722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats.
    Zhang XM; Medrano RF; Wang M; Beauchemin KA; Ma ZY; Wang R; Wen JN; Lukuyu BA; Tan ZL; He JH
    J Anim Sci; 2019 Dec; 97(12):4999-5008. PubMed ID: 31740932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovicins: The Bacteriocins of Streptococci and Their Potential in Methane Mitigation.
    Garsa AK; Choudhury PK; Puniya AK; Dhewa T; Malik RK; Tomar SK
    Probiotics Antimicrob Proteins; 2019 Dec; 11(4):1403-1413. PubMed ID: 30603877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.
    Hristov AN; Oh J; Firkins JL; Dijkstra J; Kebreab E; Waghorn G; Makkar HP; Adesogan AT; Yang W; Lee C; Gerber PJ; Henderson B; Tricarico JM
    J Anim Sci; 2013 Nov; 91(11):5045-69. PubMed ID: 24045497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse hydrogen production and consumption pathways influence methane production in ruminants.
    Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI
    ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Microbiome Analysis Reveals the Ecological Relationships Between Rumen Methanogens, Acetogens, and Their Hosts.
    Li Z; Wang X; Alberdi A; Deng J; Zhong Z; Si H; Zheng C; Zhou H; Wang J; Yang Y; Wright AG; Mao S; Zhang Z; Guan L; Li G
    Front Microbiol; 2020; 11():1311. PubMed ID: 32714292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet-Microbe Interaction.
    Hassan FU; Arshad MA; Ebeid HM; Rehman MS; Khan MS; Shahid S; Yang C
    Front Vet Sci; 2020; 7():575801. PubMed ID: 33263013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community.
    Gruninger RJ; Zhang XM; Smith ML; Kung L; Vyas D; McGinn SM; Kindermann M; Wang M; Tan ZL; Beauchemin KA
    Anim Microbiome; 2022 May; 4(1):35. PubMed ID: 35642048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary sources and their effects on animal production and environmental sustainability.
    Wanapat M; Cherdthong A; Phesatcha K; Kang S
    Anim Nutr; 2015 Sep; 1(3):96-103. PubMed ID: 29767156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Multiwell-Plate Methods Using Pure Cultures of Methanogens To Identify New Inhibitors for Suppressing Ruminant Methane Emissions.
    Weimar MR; Cheung J; Dey D; McSweeney C; Morrison M; Kobayashi Y; Whitman WB; Carbone V; Schofield LR; Ronimus RS; Cook GM
    Appl Environ Microbiol; 2017 Aug; 83(15):. PubMed ID: 28526787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary fiber on the methanogen community in the hindgut of Lantang gilts.
    Cao Z; Liang JB; Liao XD; Wright AD; Wu YB; Yu B
    Animal; 2016 Oct; 10(10):1666-76. PubMed ID: 27052363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review.
    Jeyanathan J; Martin C; Morgavi DP
    Animal; 2014 Feb; 8(2):250-61. PubMed ID: 24274095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.