These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 33516013)
41. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. Pitta DW; Indugu N; Melgar A; Hristov A; Challa K; Vecchiarelli B; Hennessy M; Narayan K; Duval S; Kindermann M; Walker N Microbiome; 2022 Sep; 10(1):146. PubMed ID: 36100950 [TBL] [Abstract][Full Text] [Related]
42. Variations in methane yield and microbial community profiles in the rumen of dairy cows as they pass through stages of first lactation. Lyons T; Bielak A; Doyle E; Kuhla B J Dairy Sci; 2018 Jun; 101(6):5102-5114. PubMed ID: 29550115 [TBL] [Abstract][Full Text] [Related]
43. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
44. The Role of Chitosan as a Possible Agent for Enteric Methane Mitigation in Ruminants. Jiménez-Ocampo R; Valencia-Salazar S; Pinzón-Díaz CE; Herrera-Torres E; Aguilar-Pérez CF; Arango J; Ku-Vera JC Animals (Basel); 2019 Nov; 9(11):. PubMed ID: 31717570 [TBL] [Abstract][Full Text] [Related]
45. Medicinal herbs as a potential strategy to decrease methane production by rumen microbiota: a systematic evaluation with a focus on Perilla frutescens seed extract. Wang J; Liu M; Wu Y; Wang L; Liu J; Jiang L; Yu Z Appl Microbiol Biotechnol; 2016 Nov; 100(22):9757-9771. PubMed ID: 27660180 [TBL] [Abstract][Full Text] [Related]
46. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478 [TBL] [Abstract][Full Text] [Related]
47. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system. He ZX; Qiao JY; Yan QX; Tan ZL; Wang M Animal; 2019 Jan; 13(1):90-97. PubMed ID: 29644945 [TBL] [Abstract][Full Text] [Related]
48. Challenges and opportunities to capture dietary effects in on-farm greenhouse gas emissions models of ruminant systems. Vibart R; de Klein C; Jonker A; van der Weerden T; Bannink A; Bayat AR; Crompton L; Durand A; Eugène M; Klumpp K; Kuhla B; Lanigan G; Lund P; Ramin M; Salazar F Sci Total Environ; 2021 May; 769():144989. PubMed ID: 33485195 [TBL] [Abstract][Full Text] [Related]
49. Cattle Manure Enhances Methanogens Diversity and Methane Emissions Compared to Swine Manure under Rice Paddy. Kim SY; Pramanik P; Bodelier PL; Kim PJ PLoS One; 2014; 9(12):e113593. PubMed ID: 25494364 [TBL] [Abstract][Full Text] [Related]
50. Review: Biological consequences of the inhibition of rumen methanogenesis. Ungerfeld EM; Pitta D Animal; 2024 Apr; ():101170. PubMed ID: 38772773 [TBL] [Abstract][Full Text] [Related]
51. Effect of silkworm ( Thirumalaisamy G; Malik PK; Kolte AP; Trivedi S; Dhali A; Bhatta R Anim Biotechnol; 2022 Feb; 33(1):128-140. PubMed ID: 32573336 [No Abstract] [Full Text] [Related]
52. Syntrophy via Interspecies H Ruaud A; Esquivel-Elizondo S; de la Cuesta-Zuluaga J; Waters JL; Angenent LT; Youngblut ND; Ley RE mBio; 2020 Feb; 11(1):. PubMed ID: 32019803 [TBL] [Abstract][Full Text] [Related]
53. Effect of intensification of pastoral farming on greenhouse gas emissions in New Zealand. Pinares-Patino CS; Waghorn GC; Hegarty RS; Hoskin SO N Z Vet J; 2009 Oct; 57(5):252-61. PubMed ID: 19802038 [TBL] [Abstract][Full Text] [Related]
54. A Review: Plant Carbohydrate Types-The Potential Impact on Ruminant Methane Emissions. Sun X; Cheng L; Jonker A; Munidasa S; Pacheco D Front Vet Sci; 2022; 9():880115. PubMed ID: 35782553 [TBL] [Abstract][Full Text] [Related]
55. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Zubieta ÁS; Savian JV; de Souza Filho W; Wallau MO; Gómez AM; Bindelle J; Bonnet OJF; de Faccio Carvalho PC Sci Total Environ; 2021 Feb; 754():142029. PubMed ID: 33254863 [TBL] [Abstract][Full Text] [Related]
56. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Patra AK Environ Monit Assess; 2012 Apr; 184(4):1929-52. PubMed ID: 21547374 [TBL] [Abstract][Full Text] [Related]
57. New aspects and strategies for methane mitigation from ruminants. Kumar S; Choudhury PK; Carro MD; Griffith GW; Dagar SS; Puniya M; Calabro S; Ravella SR; Dhewa T; Upadhyay RC; Sirohi SK; Kundu SS; Wanapat M; Puniya AK Appl Microbiol Biotechnol; 2014 Jan; 98(1):31-44. PubMed ID: 24247990 [TBL] [Abstract][Full Text] [Related]
58. Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. Lettat A; Hassanat F; Benchaar C J Dairy Sci; 2013 Aug; 96(8):5237-48. PubMed ID: 23769352 [TBL] [Abstract][Full Text] [Related]
59. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. Aguilar-Marin SB; Betancur-Murillo CL; Isaza GA; Mesa H; Jovel J BMC Microbiol; 2020 Nov; 20(1):364. PubMed ID: 33246412 [TBL] [Abstract][Full Text] [Related]