These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 33516018)

  • 1. Improved dairy cattle mating plans at herd level using genomic information.
    Bérodier M; Berg P; Meuwissen T; Boichard D; Brochard M; Ducrocq V
    Animal; 2021 Jan; 15(1):100016. PubMed ID: 33516018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mating advice system in dairy cattle incorporating genomic information.
    Carthy TR; McCarthy J; Berry DP
    J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mating programs including genomic relationships and dominance effects.
    Sun C; VanRaden PM; O'Connell JR; Weigel KA; Gianola D
    J Dairy Sci; 2013; 96(12):8014-23. PubMed ID: 24119810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of sexed semen and female genotyping affects genetic and economic outcomes of Montbéliarde dairy herds depending on the farming system considered.
    Bérodier M; Brochard M; Boichard D; Dezetter C; Bareille N; Ducrocq V
    J Dairy Sci; 2019 Nov; 102(11):10073-10087. PubMed ID: 31447148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information.
    Pryce JE; Hayes BJ; Goddard ME
    J Dairy Sci; 2012 Jan; 95(1):377-88. PubMed ID: 22192217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Management of lethal recessive alleles in beef cattle through the use of mate selection software.
    Upperman LR; Kinghorn BP; MacNeil MD; Van Eenennaam AL
    Genet Sel Evol; 2019 Aug; 51(1):36. PubMed ID: 31382878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic analysis of inbreeding and coancestry in Nordic Jersey and Holstein dairy cattle populations.
    Tenhunen S; Thomasen JR; Sørensen LP; Berg P; Kargo M
    J Dairy Sci; 2024 Aug; 107(8):5897-5912. PubMed ID: 38608951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of genomic selection on rate of inbreeding and coancestry and effective population size of Holstein and Jersey cattle populations.
    Makanjuola BO; Miglior F; Abdalla EA; Maltecca C; Schenkel FS; Baes CF
    J Dairy Sci; 2020 Jun; 103(6):5183-5199. PubMed ID: 32278553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs.
    Gorjanc G; Hickey JM
    Bioinformatics; 2018 Oct; 34(19):3408-3411. PubMed ID: 29722792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of computerized mate selection programs to control inbreeding of Holstein and Jersey cattle in the next generation.
    Weigel KA; Lin SW
    J Dairy Sci; 2000 Apr; 83(4):822-8. PubMed ID: 10791799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Including nonadditive genetic effects in mating programs to maximize dairy farm profitability.
    Aliloo H; Pryce JE; González-Recio O; Cocks BG; Goddard ME; Hayes BJ
    J Dairy Sci; 2017 Feb; 100(2):1203-1222. PubMed ID: 27939540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of genomic selection on genetic diversity and genetic gain in three French dairy cattle breeds.
    Doublet AC; Croiseau P; Fritz S; Michenet A; Hozé C; Danchin-Burge C; Laloë D; Restoux G
    Genet Sel Evol; 2019 Sep; 51(1):52. PubMed ID: 31547802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-random mating for selection with restricted rates of inbreeding and overlapping generations.
    Sonesson AK; Meuwissen TH
    Genet Sel Evol; 2002; 34(1):23-39. PubMed ID: 11929623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships.
    Schierenbeck S; Pimentel EC; Tietze M; Körte J; Reents R; Reinhardt F; Simianer H; König S
    J Dairy Sci; 2011 Dec; 94(12):6143-52. PubMed ID: 22118102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Genomics of bull fertility.
    Taylor JF; Schnabel RD; Sutovsky P
    Animal; 2018 Jun; 12(s1):s172-s183. PubMed ID: 29618393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the impact of natural service bulls and genotype by environment interactions on genetic gain and inbreeding in organic dairy cattle genomic breeding programs.
    Yin T; Wensch-Dorendorf M; Simianer H; Swalve HH; König S
    Animal; 2014 Jun; 8(6):877-86. PubMed ID: 24703184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of kinship matrices on genetic gain and inbreeding with optimum contribution selection in a genomic dairy cattle breeding program.
    Gautason E; Sahana G; Guldbrandtsen B; Berg P
    Genet Sel Evol; 2023 Jul; 55(1):48. PubMed ID: 37460999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotyping more cows increases genetic gain and reduces rate of true inbreeding in a dairy cattle breeding scheme using female reproductive technologies.
    Thomasen JR; Liu H; Sørensen AC
    J Dairy Sci; 2020 Jan; 103(1):597-606. PubMed ID: 31733861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mating allocations in Nordic Red Dairy Cattle using genomic information.
    Bengtsson C; Stålhammar H; Thomasen JR; Eriksson S; Fikse WF; Strandberg E
    J Dairy Sci; 2022 Feb; 105(2):1281-1297. PubMed ID: 34799119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.