BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33516114)

  • 1. High air flow-rate electrostatic sampler for the rapid monitoring of airborne coronavirus and influenza viruses.
    Kim HR; An S; Hwang J
    J Hazard Mater; 2021 Jun; 412():125219. PubMed ID: 33516114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus.
    Kim HR; An S; Hwang J
    Biosens Bioelectron; 2020 Dec; 170():112656. PubMed ID: 33010706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling and detection of airborne influenza virus towards point-of-care applications.
    Ladhani L; Pardon G; Meeuws H; van Wesenbeeck L; Schmidt K; Stuyver L; van der Wijngaart W
    PLoS One; 2017; 12(3):e0174314. PubMed ID: 28350811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced enrichment of collected airborne coronavirus and influenza virus samples via a ConA-coated microfluidic chip for PCR detection.
    Piri A; Hyun KA; Jung HI; Nam KS; Hwang J
    J Hazard Mater; 2024 Mar; 465():133249. PubMed ID: 38154189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler.
    Fabian P; McDevitt JJ; Houseman EA; Milton DK
    Indoor Air; 2009 Oct; 19(5):433-41. PubMed ID: 19689447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased survivability of coronavirus and H1N1 influenza virus under electrostatic aerosol-to-hydrosol sampling.
    Piri A; Kim HR; Park DH; Hwang J
    J Hazard Mater; 2021 Jul; 413():125417. PubMed ID: 33930959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaerosol sampling for the detection of aerosolized influenza virus.
    Blachere FM; Lindsley WG; Slaven JE; Green BJ; Anderson SE; Chen BT; Beezhold DH
    Influenza Other Respir Viruses; 2007 May; 1(3):113-20. PubMed ID: 19453416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of samplers collecting airborne influenza viruses: 1. Primarily impingers and cyclones.
    Raynor PC; Adesina A; Aboubakr HA; Yang M; Torremorell M; Goyal SM
    PLoS One; 2021; 16(1):e0244977. PubMed ID: 33507951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerosol-to-Hydrosol Sampling and Simultaneous Enrichment of Airborne Bacteria For Rapid Biosensing.
    Kim HR; An S; Hwang J
    ACS Sens; 2020 Sep; 5(9):2763-2771. PubMed ID: 32493010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient measurement of airborne viable viruses using the growth-based virus aerosol concentrator with high flow velocities.
    Jang J; Bhardwaj J; Jang J
    J Hazard Mater; 2022 Jul; 434():128873. PubMed ID: 35427967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airborne Influenza A Is Detected in the Personal Breathing Zone of Swine Veterinarians.
    O'Brien KM; Nonnenmann MW
    PLoS One; 2016; 11(2):e0149083. PubMed ID: 26867129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler.
    Cao G; Noti JD; Blachere FM; Lindsley WG; Beezhold DH
    J Environ Monit; 2011 Dec; 13(12):3321-8. PubMed ID: 21975583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth.
    Pan M; Bonny TS; Loeb J; Jiang X; Lednicky JA; Eiguren-Fernandez A; Hering S; Fan ZH; Wu CY
    mSphere; 2017; 2(5):. PubMed ID: 29034325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of five bacteriophages as models for viral aerosol studies.
    Turgeon N; Toulouse MJ; Martel B; Moineau S; Duchaine C
    Appl Environ Microbiol; 2014 Jul; 80(14):4242-50. PubMed ID: 24795379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influenza virus survival in aerosols and estimates of viable virus loss resulting from aerosolization and air-sampling.
    Brown JR; Tang JW; Pankhurst L; Klein N; Gant V; Lai KM; McCauley J; Breuer J
    J Hosp Infect; 2015 Nov; 91(3):278-81. PubMed ID: 26412395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gentle Sampling of Submicrometer Airborne Virus Particles using a Personal Electrostatic Particle Concentrator.
    Hong S; Bhardwaj J; Han CH; Jang J
    Environ Sci Technol; 2016 Nov; 50(22):12365-12372. PubMed ID: 27786464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of airborne influenza virus in aerosol particles from human coughs.
    Lindsley WG; Blachere FM; Thewlis RE; Vishnu A; Davis KA; Cao G; Palmer JE; Clark KE; Fisher MA; Khakoo R; Beezhold DH
    PLoS One; 2010 Nov; 5(11):e15100. PubMed ID: 21152051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionizing air affects influenza virus infectivity and prevents airborne-transmission.
    Hagbom M; Nordgren J; Nybom R; Hedlund KO; Wigzell H; Svensson L
    Sci Rep; 2015 Jun; 5():11431. PubMed ID: 26101102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High enrichment and near real-time quantification of airborne viruses using a wet-paper-based electrochemical immunosensor under an electrostatic field.
    Bhardwaj J; Ngo ND; Lee J; Jang J
    J Hazard Mater; 2023 Jan; 442():130006. PubMed ID: 36162308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utility of Three Nebulizers in Investigating the Infectivity of Airborne Viruses.
    Niazi S; Philp LK; Spann K; Johnson GR
    Appl Environ Microbiol; 2021 Jul; 87(16):e0049721. PubMed ID: 34085856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.