BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33516137)

  • 41. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A.
    Bereketoglu C; Arga KY; Eraslan S; Mertoglu B
    Curr Genet; 2017 May; 63(2):253-274. PubMed ID: 27460658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A.
    Moravek MB; Yin P; Coon JS; Ono M; Druschitz SA; Malpani SS; Dyson MT; Rademaker AW; Robins JC; Wei JJ; Kim JJ; Bulun SE
    J Clin Endocrinol Metab; 2017 May; 102(5):1588-1595. PubMed ID: 28324020
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells.
    Kim H; Kim HS; Moon WK
    Toxicol Appl Pharmacol; 2019 Dec; 385():114814. PubMed ID: 31715268
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Editor's Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells.
    Mesnage R; Phedonos A; Arno M; Balu S; Corton JC; Antoniou MN
    Toxicol Sci; 2017 Aug; 158(2):431-443. PubMed ID: 28591870
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Overexpression of the Wnt5b gene in leiomyoma cells: implications for a role of the Wnt signaling pathway in the uterine benign tumor.
    Mangioni S; Viganò P; Lattuada D; Abbiati A; Vignali M; Di Blasio AM
    J Clin Endocrinol Metab; 2005 Sep; 90(9):5349-55. PubMed ID: 15972578
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling.
    Liu J; Yu L; Castro L; Yan Y; Clayton NP; Bushel P; Flagler ND; Scappini E; Dixon D
    FASEB J; 2022 Feb; 36(2):e22101. PubMed ID: 35032343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In utero bisphenol A exposure disturbs germ cell cyst breakdown through the PI3k/Akt signaling pathway and BDNF expression.
    Li C; Qi T; Ma L; Lan YB; Luo J; Chu K; Huang Y; Ruan F; Zhou J
    Ecotoxicol Environ Saf; 2023 Jul; 259():115031. PubMed ID: 37210998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Role for Progesterone-Regulated sFRP4 Expression in Uterine Leiomyomas.
    Delaney MA; Wan YW; Kim GE; Creighton CJ; Taylor MG; Masand R; Park A; Valdes C; Gibbons W; Liu Z; Anderson ML
    J Clin Endocrinol Metab; 2017 Sep; 102(9):3316-3326. PubMed ID: 28637297
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The estrogenic proliferative effects of two alkylphenols and a preliminary mechanism exploration in MCF-7 breast cancer cells.
    Wang X; Luo N; Xu Z; Zheng X; Huang B; Pan X
    Environ Toxicol; 2020 May; 35(5):628-638. PubMed ID: 31916403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PI3K/Akt/mTOR signaling & its regulator tumour suppressor genes
    Makker A; Goel MM; Mahdi AA; Bhatia V; Das V; Agarwal A; Pandey A
    Indian J Med Res; 2016 May; 143(Supplement):S112-S119. PubMed ID: 27748285
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Statistical Approach to Detect Intrinsically Disordered Proteins Associated with Uterine Leiomyoma.
    Maulik U; Uversky VN; Sen S
    Protein Pept Lett; 2018; 25(5):483-491. PubMed ID: 29577850
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential expression of G-protein-coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle.
    Tian R; Wang Z; Shi Z; Li D; Wang Y; Zhu Y; Lin W; Gui Y; Zheng XL
    Fertil Steril; 2013 Jan; 99(1):256-263.e3. PubMed ID: 23043685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Locostatin, a disrupter of Raf kinase inhibitor protein, inhibits extracellular matrix production, proliferation, and migration in human uterine leiomyoma and myometrial cells.
    Janjusevic M; Greco S; Islam MS; Castellucci C; Ciavattini A; Toti P; Petraglia F; Ciarmela P
    Fertil Steril; 2016 Nov; 106(6):1530-1538.e1. PubMed ID: 27565262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-alpha-positive human cells.
    Singleton DW; Feng Y; Yang J; Puga A; Lee AV; Khan SA
    Environ Res; 2006 Jan; 100(1):86-92. PubMed ID: 16029874
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PLIN2 Functions As a Novel Link Between Progesterone Signaling and Metabolism in Uterine Leiomyoma Cells.
    Okeigwe I; Bulun S; Liu S; Rademaker AW; Coon JS; Kujawa S; Robins J; Yin P
    J Clin Endocrinol Metab; 2019 Dec; 104(12):6256-6264. PubMed ID: 31504629
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.
    Commandeur AE; Styer AK; Teixeira JM
    Hum Reprod Update; 2015; 21(5):593-615. PubMed ID: 26141720
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genomic expression profiling and bioinformatics analysis on diabetic nephrology with ginsenoside Rg3.
    Wang J; Cui C; Fu L; Xiao Z; Xie N; Liu Y; Yu L; Wang H; Luo B
    Mol Med Rep; 2016 Aug; 14(2):1162-72. PubMed ID: 27279428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estrogenic effects of phenolic compounds on glucose-6-phosphate dehydrogenase in MCF-7 cells and uterine glutathione peroxidase in rats.
    Kim KB; Seo KW; Kim YJ; Park M; Park CW; Kim PY; Kim JI; Lee SH
    Chemosphere; 2003 Mar; 50(9):1167-73. PubMed ID: 12547330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting leiomyomas with all-trans-retinoic acid at phosphoinositide 3-kinase pathway suppression: Effective roles of β-catenin and of signaling interactions.
    Friedman N; Shushan A; Rojansky N; Shveiky D; Levitzki R; Chaouat M; Ben-Bassat H
    J Obstet Gynaecol Res; 2016 Oct; 42(10):1343-1353. PubMed ID: 27354299
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway.
    Crabtree JS; Jelinsky SA; Harris HA; Choe SE; Cotreau MM; Kimberland ML; Wilson E; Saraf KA; Liu W; McCampbell AS; Dave B; Broaddus RR; Brown EL; Kao W; Skotnicki JS; Abou-Gharbia M; Winneker RC; Walker CL
    Cancer Res; 2009 Aug; 69(15):6171-8. PubMed ID: 19622772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.