These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33516146)

  • 41. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater.
    Chen J; Gao M; Zhao Y; Guo L; Jin C; Ji J; She Z
    Bioresour Technol; 2022 Aug; 358():127401. PubMed ID: 35660456
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland.
    Zhou X; Wang X; Zhang H; Wu H
    Bioresour Technol; 2017 Oct; 241():269-275. PubMed ID: 28575790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Corncob-pyrite bioretention system for enhanced dissolved nutrient treatment: Carbon source release and mixotrophic denitrification.
    Weng Z; Ma H; Ma J; Kong Z; Shao Z; Yuan Y; Xu Y; Ni Q; Chai H
    Chemosphere; 2022 Nov; 306():135534. PubMed ID: 35772517
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effect of reed rhizosphere on nitrogen and COD removal efficiency in subsurface flow constructed wetlands].
    Dai YY; Yang XP; Zhou LX
    Huan Jing Ke Xue; 2008 Dec; 29(12):3387-92. PubMed ID: 19256373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced Nutrients Removal Using Reeds Straw as Carbon Source in a Laboratory Scale Constructed Wetland.
    Wang T; Wang H; Chang Y; Chu Z; Zhao Y; Liu R
    Int J Environ Res Public Health; 2018 May; 15(6):. PubMed ID: 29861473
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron ore or manganese ore filled constructed wetlands enhanced removal performance and changed removal process of nitrogen under sulfamethoxazole and trimethoprim stress.
    Huo J; Li C; Hu X; Xie H; Hu Z; Wu H; Liang S; Zhang J
    Environ Sci Pollut Res Int; 2022 Oct; 29(47):71766-71773. PubMed ID: 35606580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of nZVI dosing on the improvement in the contaminant removal performance of constructed wetlands under the dye stress.
    Zhao Y; Zhao Z; Song X; Jiang X; Wang Y; Cao X; Si Z; Pan F
    Sci Total Environ; 2020 Feb; 703():134789. PubMed ID: 31715467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modified solid carbon sources with nitrate adsorption capability combined with nZVI improve the denitrification performance of constructed wetlands.
    Zhao Y; Song X; Cao X; Wang Y; Zhao Z; Si Z; Yuan S
    Bioresour Technol; 2019 Dec; 294():122189. PubMed ID: 31569043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of microfiber in vertical flow constructed wetlands treating greywater.
    Sotiropoulou M; Stefanatou A; Schiza S; Petousi I; Stasinakis AS; Fountoulakis MS
    Sci Total Environ; 2023 Feb; 858(Pt 1):159723. PubMed ID: 36309266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of influent feeding pattern on municipal tailwater treatment during a sulfur-based denitrification constructed wetland.
    Wang H; Li Y; Zhang S; Li D; Liu X; Wang W; Liu L; Wang Y; Kang L
    Bioresour Technol; 2020 Nov; 315():123807. PubMed ID: 32731159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure.
    Si Z; Song X; Wang Y; Cao X; Zhao Y; Wang B; Chen Y; Arefe A
    Bioresour Technol; 2018 Nov; 267():416-425. PubMed ID: 30032055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High performance of integrated vertical-flow constructed wetland for polishing low C/N ratio river based on a pilot-scale study in Hangzhou, China.
    Xu P; Xiao E; He F; Xu D; Zhang Y; Wang Y; Wu Z
    Environ Sci Pollut Res Int; 2019 Aug; 26(22):22431-22449. PubMed ID: 31154652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effectiveness of the tropical plants
    Ewemoje OE; Semprini L; Wood BD; Sangodoyin AY; Radniecki TS
    Int J Phytoremediation; 2023; 25(11):1542-1557. PubMed ID: 36880391
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Effect of Intermittent Aeration on Nitrogen Removal Efficiency in Vertical Subsurface Flow Constructed Wetland].
    Wang J; Li HZ; Zhen BC; Liu ZD
    Huan Jing Ke Xue; 2016 Mar; 37(3):980-7. PubMed ID: 27337890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon sources derived from maize cobs enhanced nitrogen removal in saline constructed wetland microcosms treating mariculture effluents under greenhouse condition.
    Li M; Sun L; Song X
    Chemosphere; 2020 Mar; 243():125342. PubMed ID: 31995865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nitrogen removal efficiency of surface flow constructed wetland for treating slightly polluted river water.
    Wei D; Singh RP; Li Y; Fu D
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24902-24913. PubMed ID: 32342414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: Performance change and its underlying mechanism.
    Xu Z; Li Y; Zhou P; Song X; Wang Y
    Sci Total Environ; 2022 Nov; 845():157403. PubMed ID: 35850339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cold temperature mediated nitrate removal pathways in electrolysis-assisted constructed wetland systems under different influent C/N ratios and anode materials.
    Liu W; Chu Y; Tan Q; Chen J; Yang L; Ma L; Zhang Y; Wu Z; He F
    Chemosphere; 2022 May; 295():133867. PubMed ID: 35143860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of HRT on the efficiency of denitrification and carbon source release in constructed wetland filled with bark.
    Jiang Y; Li Y; Zhang Y; Zhang X
    Water Sci Technol; 2017 Jun; 75(12):2908-2915. PubMed ID: 28659531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydraulic flow direction alters nutrients removal performance and microbial mechanisms in electrolysis-assisted constructed wetlands.
    Wang Y; Zhou J; Shi S; Zhou J; He X; He L
    Bioresour Technol; 2021 Apr; 325():124692. PubMed ID: 33453660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.