BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33516198)

  • 1. Impacts of fludioxonil resistance on global gene expression in the necrotrophic fungal plant pathogen Sclerotinia sclerotiorum.
    Taiwo AO; Harper LA; Derbyshire MC
    BMC Genomics; 2021 Jan; 22(1):91. PubMed ID: 33516198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Biological and Molecular Characteristics of Resistance to Fludioxonil in
    Zhou F; Hu HY; Li DX; Tan LG; Zhang Q; Gao HT; Sun HL; Tian XL; Shi MW; Zhang FL; Li CW
    Plant Dis; 2021 Jul; 105(7):1936-1941. PubMed ID: 33044139
    [No Abstract]   [Full Text] [Related]  

  • 3. A Putative MAPK Kinase Kinase Gene
    Li T; Xiu Q; Wang J; Duan Y; Zhou M
    Phytopathology; 2021 Mar; 111(3):521-530. PubMed ID: 33044134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring mechanisms of resistance to dimethachlone in Sclerotinia sclerotiorum.
    Firoz MJ; Xiao X; Zhu FX; Fu YP; Jiang DH; Schnabel G; Luo CX
    Pest Manag Sci; 2016 Apr; 72(4):770-9. PubMed ID: 26037646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa.
    Ochiai N; Fujimura M; Motoyama T; Ichiishi A; Usami R; Horikoshi K; Yamaguchi I
    Pest Manag Sci; 2001 May; 57(5):437-42. PubMed ID: 11374161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance risk assessment for fludioxonil in Bipolaris maydis.
    Han X; Zhao H; Ren W; Lv C; Chen C
    Pestic Biochem Physiol; 2017 Jun; 139():32-39. PubMed ID: 28595919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Characterization, Fitness, and Mycotoxin Production of Fusarium asiaticum Strains Resistant to Fludioxonil.
    Qiu JB; Yu MZ; Yin Q; Xu JH; Shi JR
    Plant Dis; 2018 Sep; 102(9):1759-1765. PubMed ID: 30125190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China.
    Hu J; Zhou Y; Gao T; Geng J; Dai Y; Ren H; Lamour K; Liu X
    Pestic Biochem Physiol; 2019 May; 156():123-128. PubMed ID: 31027571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-component histidine kinase Shk1 controls stress response, sclerotial formation and fungicide resistance in Sclerotinia sclerotiorum.
    Duan Y; Ge C; Liu S; Wang J; Zhou M
    Mol Plant Pathol; 2013 Sep; 14(7):708-18. PubMed ID: 23724858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungicide activity through activation of a fungal signalling pathway.
    Kojima K; Takano Y; Yoshimi A; Tanaka C; Kikuchi T; Okuno T
    Mol Microbiol; 2004 Sep; 53(6):1785-96. PubMed ID: 15341655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa.
    Noguchi R; Banno S; Ichikawa R; Fukumori F; Ichiishi A; Kimura M; Yamaguchi I; Fujimura M
    Fungal Genet Biol; 2007 Mar; 44(3):208-18. PubMed ID: 16990038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Potential Mechanism of Pydiflumetofen Resistance in
    Zhou F; Cui YX; Ma YH; Wang JY; Hu HY; Li SW; Zhang FL; Li CW
    Plant Dis; 2021 Nov; 105(11):3580-3585. PubMed ID: 33934629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum.
    Mao XW; Li JS; Chen YL; Song XS; Duan YB; Wang JX; Chen CJ; Zhou MG; Hou YP
    Pestic Biochem Physiol; 2018 Jan; 144():27-35. PubMed ID: 29463405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides.
    Li Y; He P; Tian C; Wang Y
    Fungal Genet Biol; 2020 Feb; 135():103289. PubMed ID: 31704368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts.
    Allan J; Regmi R; Denton-Giles M; Kamphuis LG; Derbyshire MC
    Sci Rep; 2019 Dec; 9(1):19966. PubMed ID: 31882688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of
    Ma J; Park SW; Kim G; Kim CS; Chang HX; Chilvers MI; Sang H
    J Agric Food Chem; 2024 Feb; 72(8):4237-4245. PubMed ID: 38374637
    [No Abstract]   [Full Text] [Related]  

  • 17. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress.
    Hagiwara D; Asano Y; Marui J; Yoshimi A; Mizuno T; Abe K
    Fungal Genet Biol; 2009 Nov; 46(11):868-78. PubMed ID: 19596074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq.
    Joshi RK; Megha S; Rahman MH; Basu U; Kav NN
    Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Characteristics and Molecular Mechanism of Fludioxonil Resistance in
    Zhou F; Hu HY; Song YL; Gao YQ; Liu QL; Song PW; Chen EY; Yu YA; Li DX; Li CW
    Plant Dis; 2020 Apr; 104(4):1041-1047. PubMed ID: 31999220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum.
    Huang Z; Lu J; Liu R; Wang P; Hu Y; Fang A; Yang Y; Qing L; Bi C; Yu Y
    Fungal Genet Biol; 2021 Apr; 149():103530. PubMed ID: 33561548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.