BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33516820)

  • 1. Edible plant-derived exosomal microRNAs: Exploiting a cross-kingdom regulatory mechanism for targeting SARS-CoV-2.
    Kalarikkal SP; Sundaram GM
    Toxicol Appl Pharmacol; 2021 Mar; 414():115425. PubMed ID: 33516820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles.
    Mu J; Zhuang X; Wang Q; Jiang H; Deng ZB; Wang B; Zhang L; Kakar S; Jun Y; Miller D; Zhang HG
    Mol Nutr Food Res; 2014 Jul; 58(7):1561-73. PubMed ID: 24842810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes.
    Kalarikkal SP; Prasad D; Kasiappan R; Chaudhari SR; Sundaram GM
    Sci Rep; 2020 Mar; 10(1):4456. PubMed ID: 32157137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Analysis of Targeting SARS-CoV-2, Viral Entry Proteins ACE2 and TMPRSS2, and Interferon Genes by Host MicroRNAs.
    Pierce JB; Simion V; Icli B; Pérez-Cremades D; Cheng HS; Feinberg MW
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33207533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular microRNAs target SARS-CoV-2 spike protein and restrict viral replication.
    Vaddadi K; Gandikota C; Huang C; Liang Y; Liu L
    Am J Physiol Cell Physiol; 2023 Aug; 325(2):C420-C428. PubMed ID: 37399496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through differential targeting of microRNAs in the human pancreas.
    Bhavya ; Pathak E; Mishra R
    J Endocrinol Invest; 2022 Mar; 45(3):537-550. PubMed ID: 34669152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant MicroRNA Potential in Targeting Sars-CoV-2 Genome Offering Efficient Antiviral MiRNA-Based Therapies.
    Hajieghrari B; Rahmanian-Koshkaki S
    Microrna; 2022; 11(3):245-262. PubMed ID: 35984027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying the Potential of miRNAs in
    Zhu H; Chang M; Wang Q; Chen J; Liu D; He W
    Int J Nanomedicine; 2023; 18():5983-6000. PubMed ID: 37901360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Therapeutic Effect of Micrornas in Extracellular Vesicles from Mesenchymal Stem Cells against SARS-CoV-2.
    Park JH; Choi Y; Lim CW; Park JM; Yu SH; Kim Y; Han HJ; Kim CH; Song YS; Kim C; Yu SR; Oh EY; Lee SM; Moon J
    Cells; 2021 Sep; 10(9):. PubMed ID: 34572043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved MicroRNAs in Human Nasopharynx Tissue Samples from Swabs Are Differentially Expressed in Response to SARS-CoV-2.
    Eichmeier A; Kiss T; Kocanova M; Hakalova E; Spetik M; Cechova J; Tichy B
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted SARS-CoV-2 miRNAs Associated with Epigenetic Viral Pathogenesis and the Detection of New Possible Drugs for Covid-19.
    Çetin Z; Bayrak T; Oğul H; Saygılı Eİ; Akkol EK
    Curr Drug Deliv; 2021; 18(10):1595-1610. PubMed ID: 33645482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host microRNAs exhibit differential propensity to interact with SARS-CoV-2 and variants of concern.
    Capistrano KJ; Richner J; Schwartz J; Mukherjee SK; Shukla D; Naqvi AR
    Biochim Biophys Acta Mol Basis Dis; 2023 Feb; 1869(2):166612. PubMed ID: 36481486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR.
    Barreda-Manso MA; Nieto-Díaz M; Soto A; Muñoz-Galdeano T; Reigada D; Maza RM
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34198800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2.
    Askari N; Hadizadeh M; Rashidifar M
    Infect Genet Evol; 2022 Jan; 97():105195. PubMed ID: 34954105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SARS-COV-2 as potential microRNA sponge in COVID-19 patients.
    Li C; Wang R; Wu A; Yuan T; Song K; Bai Y; Liu X
    BMC Med Genomics; 2022 Apr; 15(Suppl 2):94. PubMed ID: 35461273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying potential human and medicinal plant microRNAs against SARS-CoV-2 3'UTR region: A computational genomics assessment.
    Mangukia N; Rao P; Patel K; Pandya H; Rawal RM
    Comput Biol Med; 2021 Sep; 136():104662. PubMed ID: 34311261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thrombosis-related circulating miR-16-5p is associated with disease severity in patients hospitalised for COVID-19.
    Eyileten C; Wicik Z; Simões SN; Martins-Jr DC; Klos K; Wlodarczyk W; Assinger A; Soldacki D; Chcialowski A; Siller-Matula JM; Postula M
    RNA Biol; 2022 Jan; 19(1):963-979. PubMed ID: 35938548
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Baig MS; Deepanshu ; Prakash P; Alam P; Krishnan A
    J Biomol Struct Dyn; 2023; 41(21):12305-12327. PubMed ID: 36752331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (
    Kumar A; Ren Y; Sundaram K; Mu J; Sriwastva MK; Dryden GW; Lei C; Zhang L; Yan J; Zhang X; Park JW; Merchant ML; Teng Y; Zhang HG
    Theranostics; 2021; 11(9):4061-4077. PubMed ID: 33754048
    [No Abstract]   [Full Text] [Related]  

  • 20. Targeting SARS CoV2 (Indian isolate) genome with miRNA: An in silico study.
    Devi A; Chaitanya NSN
    IUBMB Life; 2020 Nov; 72(11):2454-2468. PubMed ID: 32909697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.