BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33516847)

  • 21. Isolation and functional characterization of a cold responsive phosphatidylinositol transfer-associated protein, ZmSEC14p, from maize (Zea may L.).
    Wang X; Shan X; Xue C; Wu Y; Su S; Li S; Liu H; Jiang Y; Zhang Y; Yuan Y
    Plant Cell Rep; 2016 Aug; 35(8):1671-86. PubMed ID: 27061906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative protein analysis of two maize genotypes with contrasting tolerance to low temperature.
    Ramazan S; Jan N; John R
    BMC Plant Biol; 2023 Apr; 23(1):183. PubMed ID: 37020183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis.
    Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T
    BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings.
    Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y
    J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative transcriptome analysis reveals that chlorophyll metabolism contributes to leaf color changes in wucai (Brassica campestris L.) in response to cold.
    Yuan L; Zhang L; Wu Y; Zheng Y; Nie L; Zhang S; Lan T; Zhao Y; Zhu S; Hou J; Chen G; Tang X; Wang C
    BMC Plant Biol; 2021 Sep; 21(1):438. PubMed ID: 34583634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A meta-analysis reveals differential sensitivity of cold stress responses in the maize leaf.
    Lainé CMS; AbdElgawad H; Beemster GTS
    Plant Cell Environ; 2023 Aug; 46(8):2432-2449. PubMed ID: 37170821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZmDREB1A Regulates RAFFINOSE SYNTHASE Controlling Raffinose Accumulation and Plant Chilling Stress Tolerance in Maize.
    Han Q; Qi J; Hao G; Zhang C; Wang C; Dirk LMA; Downie AB; Zhao T
    Plant Cell Physiol; 2020 Feb; 61(2):331-341. PubMed ID: 31638155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional and physiological data revealed cold tolerance in a photo-thermo sensitive genic male sterile line Yu17S.
    Pan X; Guan L; Lei K; Li J; Zhang X
    BMC Plant Biol; 2022 Jan; 22(1):44. PubMed ID: 35062884
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maize miRNAs and their putative target genes involved in chilling stress response in 5-day old seedlings.
    Božić M; Ignjatović Micić D; Delić N; Nikolić A
    BMC Genomics; 2024 May; 25(1):479. PubMed ID: 38750515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination.
    Li H; Yue H; Xie J; Bu J; Li L; Xin X; Zhao Y; Zhang H; Yang L; Wang J; Jiang X
    Sci Rep; 2021 Sep; 11(1):19345. PubMed ID: 34588562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance.
    Zhang X; Liu X; Zhang D; Tang H; Sun B; Li C; Hao L; Liu C; Li Y; Shi Y; Xie X; Song Y; Wang T; Li Y
    PLoS One; 2017; 12(7):e0179477. PubMed ID: 28700592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi.
    Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X
    Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties.
    Li H; Yang M; Zhao C; Wang Y; Zhang R
    BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress.
    Li Y; Su Z; Lin Y; Xu Z; Bao H; Wang F; Liu J; Hu S; Wang Z; Yu X; Gao J
    BMC Plant Biol; 2024 Jan; 24(1):34. PubMed ID: 38185653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrative Proteome and Phosphoproteome Profiling of Early Cold Response in Maize Seedlings.
    Xing J; Tan J; Feng H; Zhou Z; Deng M; Luo H; Deng Z
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Green leaf volatiles protect maize (Zea mays) seedlings against damage from cold stress.
    Cofer TM; Engelberth M; Engelberth J
    Plant Cell Environ; 2018 Jul; 41(7):1673-1682. PubMed ID: 29601632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptomic diversity in seedling roots of European flint maize in response to cold.
    Frey FP; Pitz M; Schön CC; Hochholdinger F
    BMC Genomics; 2020 Apr; 21(1):300. PubMed ID: 32293268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptomic Analysis of Three Differentially Senescing Maize (
    Han X; Zhang D; Hao H; Luo Y; Zhu Z; Kuai B
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic regulation of cold-induced albinism in the maize inbred line A661.
    Rodríguez VM; Velasco P; Garrido JL; Revilla P; Ordás A; Butrón A
    J Exp Bot; 2013 Sep; 64(12):3657-67. PubMed ID: 23881393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.