These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 33518177)
41. A continuous phase-modulated approach to spatial encoding in ultrafast 2D NMR spectroscopy. Tal A; Shapira B; Frydman L J Magn Reson; 2005 Sep; 176(1):107-14. PubMed ID: 15949960 [TBL] [Abstract][Full Text] [Related]
42. Reverse detection for spectral width improvements in spatially encoded dimensions of ultrafast two-dimensional NMR spectra. Wei Z; Yang J; Lin L; Liu G; Lin Y; Chen Z Magn Reson Chem; 2014 Nov; 52(11):680-5. PubMed ID: 25102814 [TBL] [Abstract][Full Text] [Related]
43. NMR measurement of diffusion coefficients by radio-frequency gradients in the case of short relaxation times. Guendouz L; Leclerc S; Canet D J Magn Reson; 2024 Apr; 361():107668. PubMed ID: 38579529 [TBL] [Abstract][Full Text] [Related]
44. Fourier decompositions and pulse sequence design algorithms for nuclear magnetic resonance in inhomogeneous fields. Pryor B; Khaneja N J Chem Phys; 2006 Nov; 125(19):194111. PubMed ID: 17129093 [TBL] [Abstract][Full Text] [Related]
45. A new gradient-controlled method for improving the spectral width of ultrafast 2D NMR experiments. Giraudeau P; Akoka S J Magn Reson; 2010 Jul; 205(1):171-6. PubMed ID: 20510639 [TBL] [Abstract][Full Text] [Related]
47. Establishing resolution-improved NMR spectroscopy in high magnetic fields with unknown spatiotemporal variations. Zhang Z; Smith PE; Cai S; Zheng Z; Lin Y; Chen Z J Chem Phys; 2015 Dec; 143(24):244201. PubMed ID: 26723664 [TBL] [Abstract][Full Text] [Related]
48. Principles of MR image formation and reconstruction. Duerk JL Magn Reson Imaging Clin N Am; 1999 Nov; 7(4):629-59. PubMed ID: 10631672 [TBL] [Abstract][Full Text] [Related]
49. Spectroscopic imaging from spatially-encoded single-scan multidimensional MRI data. Tal A; Frydman L J Magn Reson; 2007 Nov; 189(1):46-58. PubMed ID: 17869559 [TBL] [Abstract][Full Text] [Related]
50. Spatial encoding and the acquisition of high-resolution NMR spectra in inhomogeneous magnetic fields. Shapira B; Frydman L J Am Chem Soc; 2004 Jun; 126(23):7184-5. PubMed ID: 15186149 [TBL] [Abstract][Full Text] [Related]
56. Improved gradient-echo 3D magnetic resonance imaging using pseudo-echoes created by frequency-swept pulses. Park JY; DelaBarre L; Garwood M Magn Reson Med; 2006 Apr; 55(4):848-57. PubMed ID: 16506188 [TBL] [Abstract][Full Text] [Related]
57. Broadband ultrafast 2D NMR spectroscopy for online monitoring in continuous flow. Lhoste C; Bazzoni M; Bonnet J; Bernard A; Felpin FX; Giraudeau P; Dumez JN Analyst; 2023 Oct; 148(20):5255-5261. PubMed ID: 37740277 [TBL] [Abstract][Full Text] [Related]
58. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations. Zhang Z; Huang Y; Smith PE; Wang K; Cai S; Chen Z J Magn Reson; 2014 May; 242():49-56. PubMed ID: 24607822 [TBL] [Abstract][Full Text] [Related]
59. Direct design of 2D RF pulses using matrix inversion. Schulte RF; Wiesinger F J Magn Reson; 2013 Oct; 235():115-20. PubMed ID: 24013595 [TBL] [Abstract][Full Text] [Related]
60. On the theory of the spin I = 1/2 double quantum NMR: Effects of spins spatial displacements between RF pulses. Brekotkin IV; Fatkullin NF; Lindt K; Mattea C; Stapf S J Chem Phys; 2022 Dec; 157(22):224108. PubMed ID: 36546811 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]