BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33518637)

  • 21. Prediction of drug adverse events using deep learning in pharmaceutical discovery.
    Lee CY; Chen YP
    Brief Bioinform; 2021 Mar; 22(2):1884-1901. PubMed ID: 32349125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting drug adverse effects using a new Gastro-Intestinal Pacemaker Activity Drug Database (GIPADD).
    Liu JYH; Rudd JA
    Sci Rep; 2023 Apr; 13(1):6935. PubMed ID: 37117211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Automated Detection System of Drug-Drug Interactions from Electronic Patient Records Using Big Data Analytics.
    Bouzillé G; Morival C; Westerlynck R; Lemordant P; Chazard E; Lecorre P; Busnel Y; Cuggia M
    Stud Health Technol Inform; 2019 Aug; 264():45-49. PubMed ID: 31437882
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current status of use of big data and artificial intelligence in RMDs: a systematic literature review informing EULAR recommendations.
    Kedra J; Radstake T; Pandit A; Baraliakos X; Berenbaum F; Finckh A; Fautrel B; Stamm TA; Gomez-Cabrero D; Pristipino C; Choquet R; Servy H; Stones S; Burmester G; Gossec L
    RMD Open; 2019; 5(2):e001004. PubMed ID: 31413871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of Adverse Drug Reaction Risk in Elderly Patients Using the Japanese Adverse Drug Event Report (JADER) Database.
    Chisaki Y; Aoji S; Yano Y
    Biol Pharm Bull; 2017; 40(6):824-829. PubMed ID: 28566626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [A Novel Approach to Analyze the Factors Affecting Adverse Drug Reactions by Combination of Electronic Medical Record Database and Machine Learning Method].
    Imai S
    Yakugaku Zasshi; 2023; 143(6):485-489. PubMed ID: 37258180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpretable Artificial Intelligence: Why and When.
    Ghosh A; Kandasamy D
    AJR Am J Roentgenol; 2020 May; 214(5):1137-1138. PubMed ID: 32130042
    [No Abstract]   [Full Text] [Related]  

  • 28. The potential role of big data in the detection of adverse drug reactions.
    Sultana J; Trifirò G
    Expert Rev Clin Pharmacol; 2020 Mar; 13(3):201-204. PubMed ID: 32176553
    [No Abstract]   [Full Text] [Related]  

  • 29. Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.
    Thrall JH; Li X; Li Q; Cruz C; Do S; Dreyer K; Brink J
    J Am Coll Radiol; 2018 Mar; 15(3 Pt B):504-508. PubMed ID: 29402533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of Artificial Intelligence in Pharmaceutical and Biomedical Studies.
    Thakur A; Mishra AP; Panda B; Rodríguez DCS; Gaurav I; Majhi B
    Curr Pharm Des; 2020; 26(29):3569-3578. PubMed ID: 32410553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: a scoping review.
    Syrowatka A; Song W; Amato MG; Foer D; Edrees H; Co Z; Kuznetsova M; Dulgarian S; Seger DL; Simona A; Bain PA; Purcell Jackson G; Rhee K; Bates DW
    Lancet Digit Health; 2022 Feb; 4(2):e137-e148. PubMed ID: 34836823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Big Data and Artificial Intelligence Modeling for Drug Discovery.
    Zhu H
    Annu Rev Pharmacol Toxicol; 2020 Jan; 60():573-589. PubMed ID: 31518513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opportunities for Web-based Drug Repositioning: Searching for Potential Antihypertensive Agents with Hypotension Adverse Events.
    Wang K; Wan M; Wang RS; Weng Z
    J Med Internet Res; 2016 Apr; 18(4):e76. PubMed ID: 27036325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Artificial Intelligence and the Future of the Drug Safety Professional.
    Danysz K; Cicirello S; Mingle E; Assuncao B; Tetarenko N; Mockute R; Abatemarco D; Widdowson M; Desai S
    Drug Saf; 2019 Apr; 42(4):491-497. PubMed ID: 30343417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Data science, artificial intelligence, and machine learning: Opportunities for laboratory medicine and the value of positive regulation.
    Gruson D; Helleputte T; Rousseau P; Gruson D
    Clin Biochem; 2019 Jul; 69():1-7. PubMed ID: 31022391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of drug-related problems in three departments of a German University hospital.
    Lenssen R; Heidenreich A; Schulz JB; Trautwein C; Fitzner C; Jaehde U; Eisert A
    Int J Clin Pharm; 2016 Feb; 38(1):119-26. PubMed ID: 26511945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contactless medical equipment AI big data risk control and quasi thinking iterative planning.
    Rongrong Z
    Sci Rep; 2022 Sep; 12(1):15039. PubMed ID: 36057659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Innovation in Pharmacovigilance: Use of Artificial Intelligence in Adverse Event Case Processing.
    Schmider J; Kumar K; LaForest C; Swankoski B; Naim K; Caubel PM
    Clin Pharmacol Ther; 2019 Apr; 105(4):954-961. PubMed ID: 30303528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiomic Big Data Analysis Challenges: Increasing Confidence in the Interpretation of Artificial Intelligence Assessments.
    Odenkirk MT; Reif DM; Baker ES
    Anal Chem; 2021 Jun; 93(22):7763-7773. PubMed ID: 34029068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developing an AI-based prediction model for anaphylactic shock from injection drugs using Japanese real-world data and chemical structure-based analysis.
    Enokiya T; Ozaki K
    Daru; 2024 Jun; 32(1):253-262. PubMed ID: 38580799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.