These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 33519084)

  • 1. Technological review on thermochemical conversion of COVID-19-related medical wastes.
    Purnomo CW; Kurniawan W; Aziz M
    Resour Conserv Recycl; 2021 Apr; 167():105429. PubMed ID: 33519084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision.
    Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis: An effective technique for degradation of COVID-19 medical wastes.
    Dharmaraj S; Ashokkumar V; Pandiyan R; Halimatul Munawaroh HS; Chew KW; Chen WH; Ngamcharussrivichai C
    Chemosphere; 2021 Jul; 275():130092. PubMed ID: 33984908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review.
    Felix CB; Ubando AT; Chen WH; Goodarzi V; Ashokkumar V
    J Hazard Mater; 2022 Feb; 423(Pt B):127215. PubMed ID: 34844348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review.
    Dharmaraj S; Ashokkumar V; Chew KW; Chia SR; Show PL; Ngamcharussrivichai C
    Int J Hydrogen Energy; 2022 Dec; 47(100):42051-42074. PubMed ID: 34776598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermochemical conversion of waste tyres-a review.
    Labaki M; Jeguirim M
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9962-9992. PubMed ID: 27796970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks.
    Yang RX; Jan K; Chen CT; Chen WT; Wu KC
    ChemSusChem; 2022 Jun; 15(11):e202200171. PubMed ID: 35349769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermochemical conversion of municipal solid waste into energy and hydrogen: a review.
    Nandhini R; Berslin D; Sivaprakash B; Rajamohan N; Vo DN
    Environ Chem Lett; 2022; 20(3):1645-1669. PubMed ID: 35350388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in thermochemical methods for the conversion of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144608. PubMed ID: 33421791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels.
    Nanda S; Sarker TR; Kang K; Li D; Dalai AK
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A technical review of bioenergy and resource recovery from municipal solid waste.
    Nanda S; Berruti F
    J Hazard Mater; 2021 Feb; 403():123970. PubMed ID: 33265011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of technologies and performances of thermal treatment systems for energy recovery from waste.
    Lombardi L; Carnevale E; Corti A
    Waste Manag; 2015 Mar; 37():26-44. PubMed ID: 25535103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Food waste-to-energy conversion technologies: current status and future directions.
    Pham TP; Kaushik R; Parshetti GK; Mahmood R; Balasubramanian R
    Waste Manag; 2015 Apr; 38():399-408. PubMed ID: 25555663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in thermochemical conversion of aquatic weeds in shellfish aquaculture for biofuel generation: Technical and economic perspectives.
    Azwar E; Wan Mahari WA; Rastegari H; Tabatabaei M; Peng W; Tsang YF; Park YK; Chen WH; Lam SS
    Bioresour Technol; 2022 Jan; 344(Pt A):126202. PubMed ID: 34710598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: a waste-to-energy conversion via Pyrolysis.
    Aragaw TA; Mekonnen BA
    Environ Syst Res (Heidelb); 2021; 10(1):8. PubMed ID: 34777936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of third generation bio-fuel through thermal cracking process by utilizing Covid-19 plastic wastes.
    Ramalingam S; Thamizhvel R; Sudagar S; Silambarasan R
    Mater Today Proc; 2023; 72():1618-1623. PubMed ID: 36213622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst.
    Kaewpengkrow P; Atong D; Sricharoenchaikul V
    Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet wastes to bioenergy and biochar: A critical review with future perspectives.
    Li J; Li L; Suvarna M; Pan L; Tabatabaei M; Ok YS; Wang X
    Sci Total Environ; 2022 Apr; 817():152921. PubMed ID: 35007594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review.
    Athanasopoulos P; Zabaniotou A
    Sci Total Environ; 2022 Aug; 834():155387. PubMed ID: 35461931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.