These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 33519084)

  • 21. Post-consumer textile thermochemical recycling to fuels and biocarbon: A critical review.
    Athanasopoulos P; Zabaniotou A
    Sci Total Environ; 2022 Aug; 834():155387. PubMed ID: 35461931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.
    Hwang IH; Kobayashi J; Kawamoto K
    Waste Manag; 2014 Feb; 34(2):402-10. PubMed ID: 24246576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermochemical valorization and characterization of household biowaste.
    Vakalis S; Sotiropoulos A; Moustakas K; Malamis D; Vekkos K; Baratieri M
    J Environ Manage; 2017 Dec; 203(Pt 2):648-654. PubMed ID: 27090765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sustainable ethylene production: Recovery from plastic waste via thermochemical processes.
    Kim SW; Kim YT; Tsang YF; Lee J
    Sci Total Environ; 2023 Dec; 903():166789. PubMed ID: 37666332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Torrefaction on Thermal and Kinetic Behavior of Kenaf during Its Pyrolysis and CO
    Lee BH; Trinh VT; Jeon CH
    ACS Omega; 2021 Apr; 6(14):9920-9927. PubMed ID: 33869972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comprehensive review on the factors affecting thermochemical conversion efficiency of algal biomass to energy.
    Das P; V P C; Mathimani T; Pugazhendhi A
    Sci Total Environ; 2021 Apr; 766():144213. PubMed ID: 33418252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dry torrefaction and continuous thermochemical conversion for upgrading agroforestry waste into eco-friendly energy carriers: Current progress and future prospect.
    Sun S; Wang Q; Wang X; Wu C; Zhang X; Bai J; Sun B
    Sci Total Environ; 2023 Dec; 905():167061. PubMed ID: 37714342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances of thermochemical conversion processes for biorefinery.
    Seo MW; Lee SH; Nam H; Lee D; Tokmurzin D; Wang S; Park YK
    Bioresour Technol; 2022 Jan; 343():126109. PubMed ID: 34637907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste.
    Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J
    Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals.
    Pang S
    Biotechnol Adv; 2019; 37(4):589-597. PubMed ID: 30447327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developments in waste tyre thermochemical conversion processes: gasification, pyrolysis and liquefaction.
    Nkosi N; Muzenda E; Gorimbo J; Belaid M
    RSC Adv; 2021 Mar; 11(20):11844-11871. PubMed ID: 35423733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of plastic waste into fuels: A critical review.
    Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S
    J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives.
    Song C; Zhang C; Zhang S; Lin H; Kim Y; Ramakrishnan M; Du Y; Zhang Y; Zheng H; Barceló D
    Sci Total Environ; 2020 Dec; 749():141972. PubMed ID: 33370925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review.
    Yang Y; Liew RK; Tamothran AM; Foong SY; Yek PNY; Chia PW; Van Tran T; Peng W; Lam SS
    Environ Chem Lett; 2021; 19(3):2127-2140. PubMed ID: 33462541
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable valorization of plastic wastes for energy with environmental safety via High-Temperature Pyrolysis (HTP) and High-Temperature Steam Gasification (HTSG).
    Kantarelis E; Donaj P; Yang W; Zabaniotou A
    J Hazard Mater; 2009 Aug; 167(1-3):675-84. PubMed ID: 19237247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A pyrolysis study for the thermal and kinetic characteristics of an agricultural waste with two different plastic wastes.
    Çepelioğullar Ö; Pütün AE
    Waste Manag Res; 2014 Oct; 32(10):971-9. PubMed ID: 25062939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waste-to-energy: Dehalogenation of plastic-containing wastes.
    Shen Y; Zhao R; Wang J; Chen X; Ge X; Chen M
    Waste Manag; 2016 Mar; 49():287-303. PubMed ID: 26764134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic.
    Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA
    Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy Recovery from Polymeric 3D Printing Waste and Olive Pomace Mixtures via Thermal Gasification-Effect of Temperature.
    Díaz-Perete D; Hermoso-Orzáez MJ; Carmo-Calado L; Martín-Doñate C; Terrados-Cepeda J
    Polymers (Basel); 2023 Feb; 15(3):. PubMed ID: 36772051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.