These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 3351926)

  • 1. Structural analysis of polymers of sickle cell hemoglobin. I. Sickle hemoglobin fibers.
    Carragher B; Bluemke DA; Gabriel B; Potel MJ; Josephs R
    J Mol Biol; 1988 Jan; 199(2):315-31. PubMed ID: 3351926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sickle-Cell Fiber Revisited.
    Bishop MF; Ferrone FA
    Biomolecules; 2023 Feb; 13(3):. PubMed ID: 36979347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Genetic and Clinical Significance of Fetal Hemoglobin Expression in Sickle Cell Disease.
    Adekile A
    Med Princ Pract; 2021; 30(3):201-211. PubMed ID: 32892201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease.
    Henry ER; Cellmer T; Dunkelberger EB; Metaferia B; Hofrichter J; Li Q; Ostrowski D; Ghirlando R; Louis JM; Moutereau S; Galactéros F; Thein SL; Bartolucci P; Eaton WA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):15018-15027. PubMed ID: 32527859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin S polymerization and sickle cell disease: A retrospective on the occasion of the 70th anniversary of Pauling's Science paper.
    Eaton WA
    Am J Hematol; 2020 Feb; 95(2):205-211. PubMed ID: 31763707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insights into the irreversible mechanical behavior of sickle hemoglobin.
    Yesudasan S; Douglas SA; Platt MO; Wang X; Averett RD
    J Biomol Struct Dyn; 2019 Mar; 37(5):1270-1281. PubMed ID: 29651930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscopic Adaptive Resolution Scheme toward Understanding of Interactions between Sickle Cell Fibers.
    Lu L; Li H; Bian X; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(1):48-59. PubMed ID: 28700924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography.
    Darrow MC; Zhang Y; Cinquin BP; Smith EA; Boudreau R; Rochat RH; Schmid MF; Xia Y; Larabell CA; Chiu W
    J Cell Sci; 2016 Sep; 129(18):3511-7. PubMed ID: 27505892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Twisted Structure of Sickle Hemoglobin Fibers via Particle Simulations.
    Lu L; Li X; Vekilov PG; Karniadakis GE
    Biophys J; 2016 May; 110(9):2085-93. PubMed ID: 27166816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of carbonmonoxy sickle hemoglobin in R-state conformation.
    Ghatge MS; Ahmed MH; Omar AS; Pagare PP; Rosef S; Kellogg GE; Abdulmalik O; Safo MK
    J Struct Biol; 2016 Jun; 194(3):446-50. PubMed ID: 27085422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the antipolymer activity of Hb ζ
    Safo MK; Ko TP; Schreiter ER; Russell JE
    J Mol Struct; 2015 Nov; 1099():99-107. PubMed ID: 26207073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the energies that stabilize sickle hemoglobin polymers.
    Wang Y; Ferrone FA
    Biophys J; 2013 Nov; 105(9):2149-56. PubMed ID: 24209860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the transition-state entropy for aggregation suggests how the growth of sickle cell hemoglobin polymers can be slowed.
    Vekilov PG; Galkin O; Pettitt BM; Choudhury N; Nagel RL
    J Mol Biol; 2008 Mar; 377(3):882-8. PubMed ID: 18280499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers.
    Galkin O; Pan W; Filobelo L; Hirsch RE; Nagel RL; Vekilov PG
    Biophys J; 2007 Aug; 93(3):902-13. PubMed ID: 17449671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metastable mesoscopic clusters in solutions of sickle-cell hemoglobin.
    Pan W; Galkin O; Filobelo L; Nagel RL; Vekilov PG
    Biophys J; 2007 Jan; 92(1):267-77. PubMed ID: 17040989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the stability of hemoglobin S double strands.
    Mu XQ; Makowski L; Magdoff-Fairchild B
    Biophys J; 1998 Jan; 74(1):655-68. PubMed ID: 9449367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubility of sickle hemoglobin measured by a kinetic micromethod.
    Liao D; Martin de Llano JJ; Himanen JP; Manning JM; Ferrone FA
    Biophys J; 1996 May; 70(5):2442-7. PubMed ID: 9172771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated desmin in PtK2 cells induces desmin-vimentin-cytokeratin coprecipitation, involution of intermediate filament networks, and nuclear fragmentation: a model for many degenerative diseases.
    Yu KR; Hijikata T; Lin ZX; Sweeney HL; Englander SW; Holtzer H
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2497-501. PubMed ID: 7511811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the structure of erythrocyte spectrin in partially expanded membrane skeletons.
    McGough AM; Josephs R
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5208-12. PubMed ID: 2367532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer models of a new deoxy-sickle cell hemoglobin fiber based on x-ray diffraction data.
    Mu XQ; Fairchild BM
    Biophys J; 1992 Jun; 61(6):1638-46. PubMed ID: 1617142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.