These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33519953)

  • 1. Evidence for the evolution of thermal tolerance, but not desiccation tolerance, in response to hotter, drier city conditions in a cosmopolitan, terrestrial isopod.
    Yilmaz AR; Diamond SE; Martin RA
    Evol Appl; 2021 Jan; 14(1):12-23. PubMed ID: 33519953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation to Urban Heat Islands Enhances Thermal Performance Following Development under Chronic Thermal Stress but Not Benign Conditions in the Terrestrial Isopod
    Yilmaz AR; Yoder A; Diamond SE; Martin RA
    Physiol Biochem Zool; 2022; 95(4):302-316. PubMed ID: 35594563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands.
    Yilmaz AR; Chick LD; Perez A; Strickler SA; Vaughn S; Martin RA; Diamond SE
    J Therm Biol; 2019 Oct; 85():102426. PubMed ID: 31657738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities.
    Diamond SE; Chick LD; Perez A; Strickler SA; Martin RA
    Proc Biol Sci; 2018 Jul; 285(1882):. PubMed ID: 30051828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of body size and lung type on desiccation resistance, hypoxia tolerance and thermal preference in two terrestrial isopods species.
    Antoł A; Berg MP; Verberk WC
    J Insect Physiol; 2021 Jul; 132():104247. PubMed ID: 33940041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keep your cool: Overwintering physiology in response to urbanization in the acorn ant, Temnothorax curvispinosus.
    Prileson EG; Clark J; Diamond SE; Lenard A; Medina-Báez OA; Yilmaz AR; Martin RA
    J Therm Biol; 2023 May; 114():103591. PubMed ID: 37276746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology evolves convergently but lags behind warming in cities.
    Diamond SE; Kolaske LR; Martin RA
    Integr Comp Biol; 2024 May; ():. PubMed ID: 38710535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature.
    Diamond SE; Chick LD; Perez A; Strickler SA; Zhao C
    Conserv Physiol; 2018; 6(1):coy030. PubMed ID: 29977563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change.
    Diamond SE; Martin RA
    J Exp Biol; 2021 Feb; 224(Pt Suppl 1):. PubMed ID: 33627462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The heat is on: Genetic adaptation to urbanization mediated by thermal tolerance and body size.
    Brans KI; Jansen M; Vanoverbeke J; Tüzün N; Stoks R; De Meester L
    Glob Chang Biol; 2017 Dec; 23(12):5218-5227. PubMed ID: 28614592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urban physiology: city ants possess high heat tolerance.
    Angilletta MJ; Wilson RS; Niehaus AC; Sears MW; Navas CA; Ribeiro PL
    PLoS One; 2007 Feb; 2(2):e258. PubMed ID: 17327918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution, not transgenerational plasticity, explains the adaptive divergence of acorn ant thermal tolerance across an urban-rural temperature cline.
    Martin RA; Chick LD; Yilmaz AR; Diamond SE
    Evol Appl; 2019 Sep; 12(8):1678-1687. PubMed ID: 31462922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly.
    Lenard A; Diamond SE
    J Insect Physiol; 2024 Jun; 155():104648. PubMed ID: 38754698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of heat and cold tolerance of a freeze-tolerant soil invertebrate distributed from temperate to Arctic regions: evidence of selection for extreme cold tolerance.
    Holmstrup M; Sørensen JG; Dai W; Krogh PH; Schmelz RM; Slotsbo S
    J Comp Physiol B; 2022 Jul; 192(3-4):435-445. PubMed ID: 35312816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands.
    Campbell-Staton SC; Velotta JP; Winchell KM
    Nat Commun; 2021 Oct; 12(1):6195. PubMed ID: 34702827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly.
    Gotcha N; Terblanche JS; Nyamukondiwa C
    J Evol Biol; 2018 Jan; 31(1):98-110. PubMed ID: 29080375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing the heat-invariant and cold-variability tolerance hypotheses across geographic gradients.
    Bozinovic F; Orellana MJ; Martel SI; Bogdanovich JM
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():46-50. PubMed ID: 25152532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses in thermal tolerance and daily activity rhythm to urban stress in
    Sato A; Takahashi Y
    Ecol Evol; 2022 Dec; 12(12):e9616. PubMed ID: 36518620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands.
    Campbell-Staton SC; Winchell KM; Rochette NC; Fredette J; Maayan I; Schweizer RM; Catchen J
    Nat Ecol Evol; 2020 Apr; 4(4):652-658. PubMed ID: 32152530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of thermal tolerance in multifarious environments.
    Cuenca Cambronero M; Beasley J; Kissane S; Orsini L
    Mol Ecol; 2018 Nov; 27(22):4529-4541. PubMed ID: 30298601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.