BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33520465)

  • 1. Improved salt tolerance of
    Cai D; Xu Y; Zhao F; Zhang Y; Duan H; Guo X
    PeerJ; 2021; 9():e10702. PubMed ID: 33520465
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Li J; Guo X; Cai D; Xu Y; Wang Y
    PeerJ; 2023; 11():e15925. PubMed ID: 37641595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced Salt Tolerance of Perennial Ryegrass by a Novel Bacterium Strain from the Rhizosphere of a Desert Shrub Haloxylon ammodendron.
    He AL; Niu SQ; Zhao Q; Li YS; Gou JY; Gao HJ; Suo SZ; Zhang JL
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29401742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Growth Enhancement using Rhizospheric Halotolerant Phosphate Solubilizing Bacterium
    Mahdi I; Fahsi N; Hafidi M; Allaoui A; Biskri L
    Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32599701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa).
    Sapre S; Gontia-Mishra I; Tiwari S
    Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression.
    Ruiz-Carrasco K; Antognoni F; Coulibaly AK; Lizardi S; Covarrubias A; Martínez EA; Molina-Montenegro MA; Biondi S; Zurita-Silva A
    Plant Physiol Biochem; 2011 Nov; 49(11):1333-41. PubMed ID: 22000057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological, proteomic, and metabolomic analysis provide insights into Bacillus sp.-mediated salt tolerance in wheat.
    Zhao Y; Zhang F; Mickan B; Wang D; Wang W
    Plant Cell Rep; 2022 Jan; 41(1):95-118. PubMed ID: 34546426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes.
    Aziz A; Akram NA; Ashraf M
    Plant Physiol Biochem; 2018 Feb; 123():192-203. PubMed ID: 29248677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of Auxin-Mediated CqEXPA50 Contributes to Salt Tolerance in Quinoa (
    Sun W; Yao M; Wang Z; Chen Y; Zhan J; Yan J; Jiang S; Jian S; Chen H; Bu T; Tang Z; Li Q; Zhao H; Wu Q
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agro-Morphological, Yield and Quality Traits and Interrelationship with Yield Stability in Quinoa (
    Hussain MI; Muscolo A; Ahmed M; Asghar MA; Al-Dakheel AJ
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33322139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism on the promotion of host growth and enhancement of salt tolerance by
    Bao X; Chong P; He C; Wang X; Zhang F
    Front Microbiol; 2024; 15():1408622. PubMed ID: 38881656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of mineral-solubilizing bacteria for physiology and growth promotion of
    Rafique E; Mumtaz MZ; Ullah I; Rehman A; Qureshi KA; Kamran M; Rehman MU; Jaremko M; Alenezi MA
    Front Plant Sci; 2022; 13():1004833. PubMed ID: 36299778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The combined effect of Cr(III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.).
    Guarino F; Ruiz KB; Castiglione S; Cicatelli A; Biondi S
    Ecotoxicol Environ Saf; 2020 Apr; 193():110345. PubMed ID: 32092578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability.
    Hussain MI; Al-Dakheel AJ; Reigosa MJ
    Plant Physiol Biochem; 2018 Aug; 129():411-420. PubMed ID: 30691637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings.
    Khan MA; Asaf S; Khan AL; Adhikari A; Jan R; Ali S; Imran M; Kim KM; Lee IJ
    Biomed Res Int; 2019; 2019():9530963. PubMed ID: 31886270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N metabolism performance in Chenopodium quinoa subjected to drought or salt stress conditions.
    Miranda-Apodaca J; Agirresarobe A; Martínez-Goñi XS; Yoldi-Achalandabaso A; Pérez-López U
    Plant Physiol Biochem; 2020 Oct; 155():725-734. PubMed ID: 32862022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.).
    Maughan PJ; Turner TB; Coleman CE; Elzinga DB; Jellen EN; Morales JA; Udall JA; Fairbanks DJ; Bonifacio A
    Genome; 2009 Jul; 52(7):647-57. PubMed ID: 19767895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress.
    Jogawat A; Saha S; Bakshi M; Dayaman V; Kumar M; Dua M; Varma A; Oelmüller R; Tuteja N; Johri AK
    Plant Signal Behav; 2013 Oct; 8(10):doi: 10.4161/psb.26891. PubMed ID: 24494239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of
    Tariq F; Zhao S; Ahmad N; Wang P; Shao Q; Ma C; Yang X
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.