These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33520574)

  • 1. ZnO and MXenes as electrode materials for supercapacitor devices.
    Ammar AU; Yildirim ID; Bakan F; Erdem E
    Beilstein J Nanotechnol; 2021; 12():49-57. PubMed ID: 33520574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Engineering and Coupling of Two-Dimensional Transition Metal Compounds for Micro-Supercapacitor Electrodes.
    Haider WA; Tahir M; He L; Mirza HA; Zhu R; Han Y; Mai L
    ACS Cent Sci; 2020 Nov; 6(11):1901-1915. PubMed ID: 33274269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadium MXenes materials for next-generation energy storage devices.
    Sijuade AA; Eze VO; Arnett NY; Okoli OI
    Nanotechnology; 2023 Apr; 34(25):. PubMed ID: 36930968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostructures of MXenes and transition metal oxides for supercapacitors: an overview.
    Ansari SN; Saraf M; Abbas Z; Mobin SM
    Nanoscale; 2023 Aug; 15(33):13546-13560. PubMed ID: 37551924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring morphology to control defect structures in ZnO electrodes for high-performance supercapacitor devices.
    Najib S; Bakan F; Abdullayeva N; Bahariqushchi R; Kasap S; Franzò G; Sankir M; Demirci Sankir N; Mirabella S; Erdem E
    Nanoscale; 2020 Aug; 12(30):16162-16172. PubMed ID: 32700701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices.
    Weng M; Zhou J; Ye Y; Qiu H; Zhou P; Luo Z; Guo Q
    J Colloid Interface Sci; 2023 Oct; 647():277-286. PubMed ID: 37262990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices.
    Toufani M; Kasap S; Tufani A; Bakan F; Weber S; Erdem E
    Nanoscale; 2020 Jun; 12(24):12790-12800. PubMed ID: 32373860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Deposition for Cultivating Nano- and Microstructured Electroactive Materials for Supercapacitors: Recent Developments and Future Perspectives.
    Kumar SA; Sahoo S; Laxminarayana GK; Rout CS
    Small; 2024 Jun; ():e2402087. PubMed ID: 38845531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress of Electrode Architecture for MXene/MoS
    Kosnan MA; Azam MA; Safie NE; Munawar RF; Takasaki A
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices.
    Buldu-Akturk M; Toufani M; Tufani A; Erdem E
    Nanoscale; 2022 Feb; 14(8):3269-3278. PubMed ID: 35166280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives.
    Otgonbayar Z; Yang S; Kim IJ; Oh WC
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Trends and Promising Electrode Materials in Micro-Supercapacitor Printing.
    Simonenko TL; Simonenko NP; Gorobtsov PY; Simonenko EP; Kuznetsov NT
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemistry of Titanium Carbide MXenes in Supercapacitor.
    Jiang T; Wang Y; Chen GZ
    Small Methods; 2023 Aug; 7(8):e2201724. PubMed ID: 37127861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors.
    Zhou X; Yue X; Dong Y; Zheng Q; Lin D; Du X; Qu G
    J Colloid Interface Sci; 2021 Oct; 599():68-78. PubMed ID: 33933798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor.
    Shaheen I; Hussain I; Zahra T; Memon R; Alothman AA; Ouladsmane M; Qureshi A; Niazi JH
    Chemosphere; 2023 May; 322():138149. PubMed ID: 36804630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current progress achieved in novel materials for supercapacitor electrodes: mini review.
    Najib S; Erdem E
    Nanoscale Adv; 2019 Aug; 1(8):2817-2827. PubMed ID: 36133592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Recent Advances in the Mechanical Properties of Self-Standing Two-Dimensional MXene-Based Nanostructures: Deep Insights into the Supercapacitor.
    Ibrahim Y; Mohamed A; Abdelgawad AM; Eid K; Abdullah AM; Elzatahry A
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 32992907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects.
    Kasap S; Kaya II; Repp S; Erdem E
    Nanoscale Adv; 2019 Jul; 1(7):2586-2597. PubMed ID: 36132734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.