These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 33520574)
21. 2D MXenes Nanosheets for Advanced Energy Conversion and Storage Devices: Recent Advances and Future Prospects. Mateen A; Suneetha M; Ahmad Shah SS; Usman M; Ahmad T; Hussain I; Khan S; Assiri MA; Hassan AM; Javed MS; Han SS; Althomali RH; Rahman MM Chem Rec; 2024 Jan; 24(1):e202300235. PubMed ID: 37753795 [TBL] [Abstract][Full Text] [Related]
22. Core-shell nanostructured Zn-Co-O@CoS arrays for high-performance hybrid supercapacitors. He Y; Xie L; Ding S; Long Y; Zhou X; Hu Q; Lin D Dalton Trans; 2021 Apr; 50(14):4923-4931. PubMed ID: 33877189 [TBL] [Abstract][Full Text] [Related]
23. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. Pant B; Park M; Ojha GP; Park J; Kuk YS; Lee EJ; Kim HY; Park SJ J Colloid Interface Sci; 2018 Jul; 522():40-47. PubMed ID: 29574267 [TBL] [Abstract][Full Text] [Related]
24. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100 [TBL] [Abstract][Full Text] [Related]
25. Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. Kumar N; Ghosh S; Thakur D; Lee CP; Sahoo PK Nanoscale Adv; 2023 Jun; 5(12):3146-3176. PubMed ID: 37325524 [TBL] [Abstract][Full Text] [Related]
26. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Kumar N; Kim SB; Lee SY; Park SJ Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898 [TBL] [Abstract][Full Text] [Related]
27. Polypyrrole-MXene coated textile-based flexible energy storage device. Yan J; Ma Y; Zhang C; Li X; Liu W; Yao X; Yao S; Luo S RSC Adv; 2018 Nov; 8(69):39742-39748. PubMed ID: 35558018 [TBL] [Abstract][Full Text] [Related]
28. Nanostructured mixed transition metal oxide spinels for supercapacitor applications. Deka S Dalton Trans; 2023 Jan; 52(4):839-856. PubMed ID: 36541048 [TBL] [Abstract][Full Text] [Related]
29. Assembling 2D MXenes into Highly Stable Pseudocapacitive Electrodes with High Power and Energy Densities. VahidMohammadi A; Mojtabavi M; Caffrey NM; Wanunu M; Beidaghi M Adv Mater; 2019 Feb; 31(8):e1806931. PubMed ID: 30589131 [TBL] [Abstract][Full Text] [Related]
30. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548 [TBL] [Abstract][Full Text] [Related]
31. A MXene-BiFeO Nag R; Das S; Das D; Venimadhav A; Bera A Phys Chem Chem Phys; 2023 Aug; 25(34):23125-23132. PubMed ID: 37602790 [TBL] [Abstract][Full Text] [Related]
32. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors. Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076 [TBL] [Abstract][Full Text] [Related]
33. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Hu M; Zhang H; Hu T; Fan B; Wang X; Li Z Chem Soc Rev; 2020 Sep; 49(18):6666-6693. PubMed ID: 32781463 [TBL] [Abstract][Full Text] [Related]
34. Electric field-assisted laser ablation fabrication and assembly of zinc oxide/carbon nanocomposites into hierarchical structures for supercapacitor electrodes. Tarasenka NN; Kornev VG; Nedelko MI; Maltanova HM; Poznyak SK; Tarasenko NV Nanoscale; 2023 Dec; 16(1):322-334. PubMed ID: 38059723 [TBL] [Abstract][Full Text] [Related]
35. Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. Lyu L; Hooch Antink W; Kim YS; Kim CW; Hyeon T; Piao Y Small; 2021 Sep; 17(36):e2101974. PubMed ID: 34323350 [TBL] [Abstract][Full Text] [Related]
36. Towards flexible solid-state supercapacitors for smart and wearable electronics. Dubal DP; Chodankar NR; Kim DH; Gomez-Romero P Chem Soc Rev; 2018 Mar; 47(6):2065-2129. PubMed ID: 29399689 [TBL] [Abstract][Full Text] [Related]
37. Vacuum-deposited thin film porous ZnO-metal oxide hybrid systems for microsupercapacitor applications with Ir/IrO Borysiewicz MA; Wzorek M; Kwoka M; Wojciechowski T Nanotechnology; 2021 Oct; 33(2):. PubMed ID: 34598175 [TBL] [Abstract][Full Text] [Related]
38. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors. Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027 [TBL] [Abstract][Full Text] [Related]
39. Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes. Liang Q; Wang Y; Yang Y; Xu T; Xu Y; Zhao Q; Heo SH; Kim MS; Jeong YH; Yao S; Song X; Choi SE; Si C Front Bioeng Biotechnol; 2022; 10():1024453. PubMed ID: 36267450 [TBL] [Abstract][Full Text] [Related]