BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33520576)

  • 1. Gene insertion in
    Guo X; Wang Y; Wu M; Hu J; Wang X; Yu M; Tang H
    3 Biotech; 2021 Feb; 11(2):90. PubMed ID: 33520576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.
    Bao Z; Xiao H; Liang J; Zhang L; Xiong X; Sun N; Si T; Zhao H
    ACS Synth Biol; 2015 May; 4(5):585-94. PubMed ID: 25207793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas12a Multiplex Genome Editing of Saccharomyces cerevisiae and the Creation of Yeast Pixel Art.
    Ciurkot K; Vonk B; Gorochowski TE; Roubos JA; Verwaal R
    J Vis Exp; 2019 May; (147):. PubMed ID: 31205318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using CRISPR/Cas9 for Large Fragment Deletions in
    Hao H; Huang J; Liu T; Tang H; Zhang L
    Bio Protoc; 2017 Jul; 7(14):e2415. PubMed ID: 34541145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Homologous Arm Length on Homologous Recombination Gene Editing Efficiency Mediated by SSB/CRISPR-Cas9 in
    Chai R; Guo J; Geng Y; Huang S; Wang H; Yao X; Li T; Qiu L
    Microorganisms; 2024 May; 12(6):. PubMed ID: 38930484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR-Cas9 Genome Engineering in Saccharomyces cerevisiae Cells.
    Ryan OW; Poddar S; Cate JH
    Cold Spring Harb Protoc; 2016 Jun; 2016(6):. PubMed ID: 27250940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of CRISPR/Cas9-Mediated Editing at Multiple Sites in the
    Karpukhin AD; Sabirzyanov FA; Serebrianyi VA
    Methods Protoc; 2023 Apr; 6(2):. PubMed ID: 37104021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cpf1 enables fast and simple genome editing of Saccharomyces cerevisiae.
    Verwaal R; Buiting-Wiessenhaan N; Dalhuijsen S; Roubos JA
    Yeast; 2018 Feb; 35(2):201-211. PubMed ID: 28886218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual auxotrophy coupled red labeling strategy for efficient genome editing in Saccharomyces cerevisiae.
    Li J; Wu T; Wang J; Chen Y; Zhang W; Cai L; Lai S; Hu K; Jin W
    Fungal Genet Biol; 2024 Jun; 173():103910. PubMed ID: 38897560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration.
    Huang S; Geng A
    J Biotechnol; 2020 Feb; 310():13-20. PubMed ID: 32006629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted integration in human cells through single crossover mediated by ZFN or CRISPR/Cas9.
    Liu X; Wang M; Qin Y; Shi X; Cong P; Chen Y; He Z
    BMC Biotechnol; 2018 Oct; 18(1):66. PubMed ID: 30340581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination.
    Butler JR; Santos RMN; Martens GR; Ladowski JM; Wang ZY; Li P; Tector M; Tector AJ
    J Surg Res; 2017 May; 212():238-245. PubMed ID: 28550913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae.
    Mans R; van Rossum HM; Wijsman M; Backx A; Kuijpers NG; van den Broek M; Daran-Lapujade P; Pronk JT; van Maris AJ; Daran JM
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25743786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas system enables fast and simple genome editing of industrial
    Stovicek V; Borodina I; Forster J
    Metab Eng Commun; 2015 Dec; 2():13-22. PubMed ID: 34150504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome.
    Yu Z; Chen H; Liu J; Zhang H; Yan Y; Zhu N; Guo Y; Yang B; Chang Y; Dai F; Liang X; Chen Y; Shen Y; Deng WM; Chen J; Zhang B; Li C; Jiao R
    Biol Open; 2014 Apr; 3(4):271-80. PubMed ID: 24659249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae.
    Hao H; Wang X; Jia H; Yu M; Zhang X; Tang H; Zhang L
    Anal Biochem; 2016 Sep; 509():118-123. PubMed ID: 27402178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.