BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33520597)

  • 1. Towards a Greener and Scalable Synthesis of Na
    De Carolis DM; Vrankovic D; Kiefer SA; Bruder E; Dürrschnabel MT; Molina-Luna L; Graczyk-Zajac M; Riedel R
    Energy Technol (Weinh); 2021 Jan; 9(1):2000856. PubMed ID: 33520597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ionic liquid synthesis route for mixed-phase sodium titanate (Na
    Kumari P; Li Y; Boston R
    Nanoscale; 2023 Jul; 15(28):12087-12094. PubMed ID: 37417804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural evolution from layered Na
    Luo L; Zhen Y; Lu Y; Zhou K; Huang J; Huang Z; Mathur S; Hong Z
    Nanoscale; 2020 Jan; 12(1):230-238. PubMed ID: 31815995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries.
    Wang Y; Tian W; Wang L; Zhang H; Liu J; Peng T; Pan L; Wang X; Wu M
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5577-5585. PubMed ID: 29346719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molten salt synthesis of disordered spinel CoFe
    Muhamad SU; Idris NH; Yusoff HM; Md Din MF; Majid SR; Noerochim L
    RSC Adv; 2023 Nov; 13(48):34200-34209. PubMed ID: 38020019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of MnO@Na
    Ji P; Wan J; Xi Y; Guan Y; Zhang C; Gu X; Li J; Lu J; Zhang D
    Nanotechnology; 2019 Aug; 30(33):335401. PubMed ID: 30836342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a High-Power Si@graphite Anode for Lithium Ion Batteries through a Wet Ball Milling Process.
    Cabello M; Gucciardi E; Herrán A; Carriazo D; Villaverde A; Rojo T
    Molecules; 2020 May; 25(11):. PubMed ID: 32471276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review of Carbon-Based Materials for Safe Lithium Metal Anodes.
    Liu Y; Li X; Fan L; Li S; Maleki Kheimeh Sari H; Qin J
    Front Chem; 2019; 7():721. PubMed ID: 31750291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Synthesis of Layered Na
    Wu C; Hua W; Zhang Z; Zhong B; Yang Z; Feng G; Xiang W; Wu Z; Guo X
    Adv Sci (Weinh); 2018 Sep; 5(9):1800519. PubMed ID: 30250795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Based Alloy-Type Composite Anode Materials toward Sodium-Ion Batteries.
    Yang G; Ilango PR; Wang S; Nasir MS; Li L; Ji D; Hu Y; Ramakrishna S; Yan W; Peng S
    Small; 2019 May; 15(22):e1900628. PubMed ID: 30969031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-coated Ni
    Kouchi K; Tayoury M; Chari A; Hdidou L; Chchiyai Z; El Kamouny K; Tamraoui Y; Manoun B; Alami J; Dahbi M
    Phys Chem Chem Phys; 2024 Feb; 26(9):7492-7503. PubMed ID: 38356390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Double-Walled Ultrathin Graphite Tube Conductive Scaffold with Encapsulated Germanium Nanoparticles as a High-Areal-Capacity and Cycle-Stable Anode for Lithium-Ion Batteries.
    Mo R; Lei Z; Rooney D; Sun K
    ACS Nano; 2019 Jul; 13(7):7536-7544. PubMed ID: 31246005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithiated NiCo
    Huang X; Feng X; Zhang B; Zhang L; Zhang S; Gao B; Chu PK; Huo K
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31824-31831. PubMed ID: 31397553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of crystalline germanium nanorods as anode for lithium-ion batteries with high cycling stability.
    Liu C; Jiang Y; Meng C; Song H; Li B; Xia S
    J Colloid Interface Sci; 2024 Apr; 660():87-96. PubMed ID: 38241874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Practical High-Energy and High-Power Lithium Battery Anodes: Present and Future.
    Wang C; Yang C; Zheng Z
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105213. PubMed ID: 35098702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.