These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33520618)

  • 1. Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator.
    Redhwan SS; Abdo MS; Shah K; Abdeljawad T; Dawood S; Abdo HA; Shaikh SL
    Results Phys; 2020 Dec; 19():103610. PubMed ID: 33520618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative.
    Abdo MS; Shah K; Wahash HA; Panchal SK
    Chaos Solitons Fractals; 2020 Jun; 135():109867. PubMed ID: 32390692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of SIQR type mathematical model under Atangana-Baleanu fractional differential operator.
    Liu X; Arfan M; Ur Rahman M; Fatima B
    Comput Methods Biomech Biomed Engin; 2023 Jan; 26(1):98-112. PubMed ID: 35271386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative.
    Thabet STM; Abdo MS; Shah K; Abdeljawad T
    Results Phys; 2020 Dec; 19():103507. PubMed ID: 33072498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems.
    Owolabi KM; Atangana A
    Chaos; 2019 Feb; 29(2):023111. PubMed ID: 30823722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel.
    Okposo NI; Adewole MO; Okposo EN; Ojarikre HI; Abdullah FA
    Chaos Solitons Fractals; 2021 Nov; 152():111427. PubMed ID: 36569784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative.
    Arfan M; Alrabaiah H; Rahman MU; Sun YL; Hashim AS; Pansera BA; Ahmadian A; Salahshour S
    Results Phys; 2021 May; 24():104046. PubMed ID: 33868907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On modeling of coronavirus-19 disease under Mittag-Leffler power law.
    Bushnaq S; Shah K; Alrabaiah H
    Adv Differ Equ; 2020; 2020(1):487. PubMed ID: 32934652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On nonlinear dynamics of COVID-19 disease model corresponding to nonsingular fractional order derivative.
    Arfan M; Lashin MMA; Sunthrayuth P; Shah K; Ullah A; Iskakova K; Gorji MR; Abdeljawad T
    Med Biol Eng Comput; 2022 Nov; 60(11):3169-3185. PubMed ID: 36107356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Existence and data dependence results for fractional differential equations involving atangana-baleanu derivative.
    Sutar ST; Kucche KD
    Rend Circ Mat Palermo; 2022; 71(2):647-663. PubMed ID: 38624880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal-fractional order mathematical vaccine model of COVID-19 under non-singular kernel.
    Algehyne EA; Ibrahim M
    Chaos Solitons Fractals; 2021 Sep; 150():111150. PubMed ID: 34149203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractal fractional based transmission dynamics of COVID-19 epidemic model.
    Liu P; Rahman MU; Din A
    Comput Methods Biomech Biomed Engin; 2022 Dec; 25(16):1852-1869. PubMed ID: 35234550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator.
    Sintunavarat W; Turab A
    Math Comput Simul; 2022 Aug; 198():65-84. PubMed ID: 35194306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the dynamics of COVID-19 using fractal-fractional operator with a case study.
    Zhou JC; Salahshour S; Ahmadian A; Senu N
    Results Phys; 2022 Feb; 33():105103. PubMed ID: 34980997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On study of fractional order epidemic model of COVID-19 under non-singular Mittag-Leffler kernel.
    Alzaid SS; Alkahtani BST
    Results Phys; 2021 Jul; 26():104402. PubMed ID: 34189025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On a new conceptual mathematical model dealing the current novel coronavirus-19 infectious disease.
    Din A; Shah K; Seadawy A; Alrabaiah H; Baleanu D
    Results Phys; 2020 Dec; 19():103510. PubMed ID: 33520616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data.
    Nisar KS; Ahmad S; Ullah A; Shah K; Alrabaiah H; Arfan M
    Results Phys; 2021 Feb; 21():103772. PubMed ID: 33520629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematical modeling and analysis of the novel Coronavirus using Atangana-Baleanu derivative.
    Alzahrani E; El-Dessoky MM; Baleanu D
    Results Phys; 2021 Jun; 25():104240. PubMed ID: 33936936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of age wise fractional order problems for the Covid-19 under non-singular kernel of Mittag-Leffler law.
    Fatima B; Rahman MU; Althobaiti S; Althobaiti A; Arfan M
    Comput Methods Biomech Biomed Engin; 2024 Aug; 27(10):1303-1321. PubMed ID: 37504956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan.
    Naik PA; Yavuz M; Qureshi S; Zu J; Townley S
    Eur Phys J Plus; 2020; 135(10):795. PubMed ID: 33145145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.