These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 33520653)
1. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Roussou S; Albergati A; Liang F; Lindblad P Metab Eng Commun; 2021 Jun; 12():e00161. PubMed ID: 33520653 [TBL] [Abstract][Full Text] [Related]
2. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Liang F; Englund E; Lindberg P; Lindblad P Metab Eng; 2018 Mar; 46():51-59. PubMed ID: 29477858 [TBL] [Abstract][Full Text] [Related]
3. Combining isotopically non-stationary metabolic flux analysis with proteomics to unravel the regulation of the Calvin-Benson-Bassham cycle in Synechocystis sp. PCC 6803. Yu King Hing N; Liang F; Lindblad P; Morgan JA Metab Eng; 2019 Dec; 56():77-84. PubMed ID: 31470115 [TBL] [Abstract][Full Text] [Related]
4. Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium Synechocystis PCC 6803. Liang F; Lindblad P Metab Eng; 2016 Nov; 38():56-64. PubMed ID: 27328433 [TBL] [Abstract][Full Text] [Related]
5. A novel variant of the Calvin-Benson cycle bypassing fructose bisphosphate. Ohta J Sci Rep; 2022 Mar; 12(1):3984. PubMed ID: 35296702 [TBL] [Abstract][Full Text] [Related]
6. Back to the future: Transplanting the chloroplast TrxF-FBPase-SBPase redox system to cyanobacteria. García-Cañas R; Florencio FJ; López-Maury L Front Plant Sci; 2022; 13():1052019. PubMed ID: 36518499 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212 [TBL] [Abstract][Full Text] [Related]
8. Membrane-Inlet Mass Spectrometry Enables a Quantitative Understanding of Inorganic Carbon Uptake Flux and Carbon Concentrating Mechanisms in Metabolically Engineered Cyanobacteria. Douchi D; Liang F; Cano M; Xiong W; Wang B; Maness PC; Lindblad P; Yu J Front Microbiol; 2019; 10():1356. PubMed ID: 31293533 [TBL] [Abstract][Full Text] [Related]
9. Glycolytic Shunts Replenish the Calvin-Benson-Bassham Cycle as Anaplerotic Reactions in Cyanobacteria. Makowka A; Nichelmann L; Schulze D; Spengler K; Wittmann C; Forchhammer K; Gutekunst K Mol Plant; 2020 Mar; 13(3):471-482. PubMed ID: 32044444 [TBL] [Abstract][Full Text] [Related]
10. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. Janasch M; Asplund-Samuelsson J; Steuer R; Hudson EP J Exp Bot; 2019 Feb; 70(3):973-983. PubMed ID: 30371804 [TBL] [Abstract][Full Text] [Related]
11. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Tamoi M; Nagaoka M; Miyagawa Y; Shigeoka S Plant Cell Physiol; 2006 Mar; 47(3):380-90. PubMed ID: 16415064 [TBL] [Abstract][Full Text] [Related]
12. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle. Jiang YH; Wang DY; Wen JF BMC Evol Biol; 2012 Oct; 12():208. PubMed ID: 23083334 [TBL] [Abstract][Full Text] [Related]
13. Structure of the dual-function fructose-1,6/sedoheptulose-1,7-bisphosphatase from Thermosynechococcus elongatus bound with sedoheptulose-7-phosphate. Cotton CA; Kabasakal BV; Miah NA; Murray JW Acta Crystallogr F Struct Biol Commun; 2015 Oct; 71(Pt 10):1341-5. PubMed ID: 26457528 [TBL] [Abstract][Full Text] [Related]
14. Design, Synthesis, and Bioassay for the Thiadiazole-Bridged Thioacetamide Compound as Cy-FBP/SBPase Inhibitors Based on Catalytic Mechanism Virtual Screening. Zuo L; Huang S; He Y; Zhang L; Cheng G; Feng Y; Han Q; Ge L; Feng L J Agric Food Chem; 2023 Aug; 71(31):11834-11846. PubMed ID: 37498729 [TBL] [Abstract][Full Text] [Related]
15. Structural and biochemical characterization of fructose-1,6/sedoheptulose-1,7-bisphosphatase from the cyanobacterium Synechocystis strain 6803. Feng L; Sun Y; Deng H; Li D; Wan J; Wang X; Wang W; Liao X; Ren Y; Hu X FEBS J; 2014 Feb; 281(3):916-26. PubMed ID: 24286336 [TBL] [Abstract][Full Text] [Related]
16. Insights Into the Regulation of the Expression Pattern of Calvin-Benson-Bassham Cycle Enzymes in C Afamefule C; Raines CA Front Plant Sci; 2020; 11():570436. PubMed ID: 33178241 [TBL] [Abstract][Full Text] [Related]
17. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin-Benson-Bassham cycle. Raines CA New Phytol; 2022 Oct; 236(2):350-356. PubMed ID: 35860861 [TBL] [Abstract][Full Text] [Related]
18. An engineered Calvin-Benson-Bassham cycle for carbon dioxide fixation in Methylobacterium extorquens AM1. Schada von Borzyskowski L; Carrillo M; Leupold S; Glatter T; Kiefer P; Weishaupt R; Heinemann M; Erb TJ Metab Eng; 2018 May; 47():423-433. PubMed ID: 29625224 [TBL] [Abstract][Full Text] [Related]
19. Study on the interaction between cyanobacteria FBP/SBPase and metal ions. Sun Y; Liao X; Li D; Feng L; Li J; Wang X; Jin J; Yi F; Zhou L; Wan J Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():337-44. PubMed ID: 22244776 [TBL] [Abstract][Full Text] [Related]
20. Gene cloning and characterization of fructose-1,6-bisphosphate aldolase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Imanaka H; Fukui T; Atomi H; Imanaka T J Biosci Bioeng; 2002; 94(3):237-43. PubMed ID: 16233297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]