BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33520800)

  • 1. Gene ontology enrichment analysis of α-amylase inhibitors from
    Khanal P; Patil BM
    J Diabetes Metab Disord; 2020 Dec; 19(2):735-747. PubMed ID: 33520800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L.
    Khanal P; Patil BM
    J Integr Med; 2021 Jan; 19(1):66-77. PubMed ID: 33071211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLUT-2 mediated glucose uptake analysis of
    Patil A; Dwivedi PSR; Gaonkar SN; Kumbhar V; Shankar Madiwalar V; Khanal P; Patil BM
    J Diabetes Metab Disord; 2022 Jun; 21(1):419-427. PubMed ID: 35673484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of in silico, in vitro and ex vivo pharmacology to decode the anti-diabetic action of
    Khanal P; Patil BM
    J Diabetes Metab Disord; 2020 Dec; 19(2):1325-1337. PubMed ID: 33553030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene set enrichment analysis of α-amylase and α-glucosidase inhibitors of
    Ternikar SG; Patil MB; Pasha I; Khanal P
    J Diabetes Metab Disord; 2020 Dec; 19(2):683-689. PubMed ID: 33520796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of alpha amylase inhibitors from
    Galagali A; Patil VS; Hiremath K; Sampat GH; Patil R; Virge R; Harish DR; Hedge HV; Roy S
    In Silico Pharmacol; 2024; 12(1):9. PubMed ID: 38327875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of α-amylase inhibitors from flavonoid fraction of
    Kulkarni S; Dwivedi P; Danappanvar AN; Subhash BA; Patil BM
    In Silico Pharmacol; 2021; 9(1):50. PubMed ID: 34458069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical profiling of secondary metabolites from Himatanthus drasticus (Mart.) Plumel latex with inhibitory action against the enzymes α-amylase and α-glucosidase: In vitro and in silico assays.
    Morais FS; Canuto KM; Ribeiro PRV; Silva AB; Pessoa ODL; Freitas CDT; Alencar NMN; Oliveira AC; Ramos MV
    J Ethnopharmacol; 2020 May; 253():112644. PubMed ID: 32058007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the therapeutic mechanism of potential phytocompounds from
    Halayal RY; Bagewadi ZK; Aldabaan NA; Shaikh IA; Khan AA
    Saudi Pharm J; 2024 May; 32(5):102026. PubMed ID: 38550331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Evaluation of the Anti-Diabetic Potential of Aqueous Acetone
    Akinyede KA; Oyewusi HA; Hughes GD; Ekpo OE; Oguntibeju OO
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro inhibitory effects of plant-based foods and their combinations on intestinal α-glucosidase and pancreatic α-amylase.
    Adisakwattana S; Ruengsamran T; Kampa P; Sompong W
    BMC Complement Altern Med; 2012 Jul; 12():110. PubMed ID: 22849553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of α-glucosidase and α-amylase by herbal compounds for the treatment of type 2 diabetes: A validation of in silico reverse docking with in vitro enzyme assays.
    Tolmie M; Bester MJ; Apostolides Z
    J Diabetes; 2021 Oct; 13(10):779-791. PubMed ID: 33550683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochemical Profiling, GC-MS Analysis and α-Amylase Inhibitory Potential of Ethanolic Extract of
    Singla RK; Dubey AK
    Endocr Metab Immune Disord Drug Targets; 2019; 19(4):419-442. PubMed ID: 30484412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity.
    Satoh T; Igarashi M; Yamada S; Takahashi N; Watanabe K
    J Ethnopharmacol; 2015 Feb; 161():147-55. PubMed ID: 25523370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies.
    Rehman K; Chohan TA; Waheed I; Gilani Z; Akash MSH
    J Cell Biochem; 2019 Jan; 120(1):425-438. PubMed ID: 30191607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.
    Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N
    J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Mechanisms Underlying the Therapeutic Potential of Plant-Based α-Amylase Inhibitors for Hyperglycemic Control in Diabetes.
    Kaur A; Singh S; Mujwar S; Singh TG
    Curr Diabetes Rev; 2024 Jul; ():. PubMed ID: 38956911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions.
    Telagari M; Hullatti K
    Indian J Pharmacol; 2015; 47(4):425-9. PubMed ID: 26288477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S; O'Neill FH; Ashafa AOT
    J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from
    Ogunyemi OM; Gyebi GA; Saheed A; Paul J; Nwaneri-Chidozie V; Olorundare O; Adebayo J; Koketsu M; Aljarba N; Alkahtani S; Batiha GE; Olaiya CO
    Front Mol Biosci; 2022; 9():866719. PubMed ID: 36032689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.