These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33520934)

  • 1. Development of a TSR-Based Method for Protein 3-D Structural Comparison With Its Applications to Protein Classification and Motif Discovery.
    Kondra S; Sarkar T; Raghavan V; Xu W
    Front Chem; 2020; 8():602291. PubMed ID: 33520934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing mirror-image discrimination capability to the TSR-based method for capturing stereo geometry and understanding hierarchical structure relationships of protein receptor family.
    Sarkar T; Chen Y; Wang Y; Chen Y; Chen F; Reaux CR; Moore LE; Raghavan V; Xu W
    Comput Biol Chem; 2023 Apr; 103():107824. PubMed ID: 36753783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of a hierarchical structure of proteins and ligand binding sites of receptors using the triangular spatial relationship-based structure comparison method and development of a size-filtering feature designed for comparing different sizes of protein structures.
    Kondra S; Chen F; Chen Y; Chen Y; Collette CJ; Xu W
    Proteins; 2022 Jan; 90(1):239-257. PubMed ID: 34392570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the effectiveness of the TSR-based protein 3-D structural comparison method for protein clustering, and structural motif identification and discovery of protein kinases, hydrolases, and SARS-CoV-2's protein via the application of amino acid grouping.
    Sarkar T; Raghavan VV; Chen F; Riley A; Zhou S; Xu W
    Comput Biol Chem; 2021 Jun; 92():107479. PubMed ID: 33951604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specific applications of the TSR-based method in identifying Zn
    Sarkar T; Reaux CR; Li J; Raghavan VV; Xu W
    Data Brief; 2022 Dec; 45():108629. PubMed ID: 36426009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BetaSearch: a new method for querying β-residue motifs.
    Ho HK; Gange G; Kuiper MJ; Ramamohanarao K
    BMC Res Notes; 2012 Jul; 5():391. PubMed ID: 22839199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient and automated large-scale detection of structural relationships in proteins with a flexible aligner.
    Gutiérrez FI; Rodriguez-Valenzuela F; Ibarra IL; Devos DP; Melo F
    BMC Bioinformatics; 2016 Jan; 17():20. PubMed ID: 26732380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seeing the results of a mutation with a vertex weighted hierarchical graph.
    Knisley DJ; Knisley JR
    BMC Proc; 2014; 8(Suppl 2 Proceedings of the 3rd Annual Symposium on Biologica):S7. PubMed ID: 25237394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early object relations into new objects.
    Downey TW
    Psychoanal Study Child; 2001; 56():39-67; discussion 68-75. PubMed ID: 12102023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):665-78. PubMed ID: 10966776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein similarity from knot theory: geometric convolution and line weavings.
    Erdmann MA
    J Comput Biol; 2005; 12(6):609-37. PubMed ID: 16108707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smolign: a spatial motifs-based protein multiple structural alignment method.
    Sun H; Sacan A; Ferhatosmanoglu H; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):249-61. PubMed ID: 21464513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MUSTA--a general, efficient, automated method for multiple structure alignment and detection of common motifs: application to proteins.
    Leibowitz N; Nussinov R; Wolfson HJ
    J Comput Biol; 2001; 8(2):93-121. PubMed ID: 11454300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale comparison of protein sequence alignment algorithms with structure alignments.
    Sauder JM; Arthur JW; Dunbrack RL
    Proteins; 2000 Jul; 40(1):6-22. PubMed ID: 10813826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved core substructures in the overlay of protein-ligand complexes.
    Finzel BC; Akavaram R; Ragipindi A; Van Voorst JR; Cahn M; Davis ME; Pokross ME; Sheriff S; Baldwin ET
    J Chem Inf Model; 2011 Aug; 51(8):1931-41. PubMed ID: 21736376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motif Analyzer for protein 3D structures.
    Aksianov E
    J Struct Biol; 2014 Apr; 186(1):62-7. PubMed ID: 24607867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid classification protocol for the CATH Domain Database to support structural genomics.
    Pearl FM; Martin N; Bray JE; Buchan DW; Harrison AP; Lee D; Reeves GA; Shepherd AJ; Sillitoe I; Todd AE; Thornton JM; Orengo CA
    Nucleic Acids Res; 2001 Jan; 29(1):223-7. PubMed ID: 11125098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast similarity search for protein 3D structures using topological pattern matching based on spatial relations.
    Park SH; Ryu KH; Gilbert D
    Int J Neural Syst; 2005 Aug; 15(4):287-96. PubMed ID: 16187404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible structural comparison allowing hinge-bending, swiveling motions.
    Verbitsky G; Nussinov R; Wolfson H
    Proteins; 1999 Feb; 34(2):232-54. PubMed ID: 10022359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fold-specific sequence scoring improves protein sequence matching.
    Leelananda SP; Kloczkowski A; Jernigan RL
    BMC Bioinformatics; 2016 Aug; 17(1):328. PubMed ID: 27578239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.