These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33521461)

  • 21. Micro-Pore Reservoir Spaces and Gas-Bearing Characteristics of the Shale Reservoirs of the Coal Measure Strata in the Qinshui Basin.
    Ma R; Wang M; Xie W; Wang H
    J Nanosci Nanotechnol; 2021 Jan; 21(1):371-381. PubMed ID: 33213637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Simulation of Methane Adsorption Capacity of Matrix Components of Shale.
    Liu X; Jiang Z; Liu S; Zhang B; Zhang K; Tang X
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular insights into competitive adsorption of CO
    Zhou W; Zhang Z; Wang H; Yan Y; Liu X
    RSC Adv; 2018 Sep; 8(59):33939-33946. PubMed ID: 35548842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.
    Shen Y; Pang Y; Shen Z; Tian Y; Ge H
    Sci Rep; 2018 Feb; 8(1):2601. PubMed ID: 29422663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Kerogen Thermal Maturity on Methane Adsorption Capacity: A Molecular Modeling Approach.
    Alafnan S; Solling T; Mahmoud M
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of Adsorption and Diffusion of Shale Gas in Composite Pores Consisting of Kaolinite and Kerogen using Molecular Simulation.
    Dawass N; Vasileiadis M; Peristeras LD; Papavasileiou KD; Economou IG
    J Phys Chem C Nanomater Interfaces; 2023 May; 127(20):9452-9462. PubMed ID: 38357005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of temperature-dependent adsorption models in material balance calculations for unconventional gas reservoirs.
    Fianu J; Gholinezhad J; Hassan M
    Heliyon; 2019 May; 5(5):e01721. PubMed ID: 31193325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of water bridge on gas adsorption and transportation mechanisms in organic shale.
    Li B; Liu Y; Lan Y; Li J; Lang Y; Rahman SS
    Sci Rep; 2024 Jul; 14(1):15008. PubMed ID: 38951644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density Analysis of Adsorption Phase in the Thermodynamic Study of Shale Gas Adsorption.
    Zhou Y; Xie Y; Wang J; Zhou C; Shi H; Li X; Jing D
    Langmuir; 2024 Apr; 40(16):8593-8607. PubMed ID: 38604806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impacting Factors, Dynamic Process, and Correction of Adsorption Reduction in Shale Reservoir: A Case Study on Shale Samples from the Western Guizhou.
    Lu G; Wei C; Wang J; Meng R; Tamehe LS
    ACS Omega; 2020 Jun; 5(24):14597-14610. PubMed ID: 32596597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pore structure characteristics and methane adsorption and desorption properties of marine shale in Sichuan Province, China.
    Changtao Y; Shuyuan L; Hailong W; Fei Y; Xu Xinyi
    RSC Adv; 2018 Feb; 8(12):6436-6443. PubMed ID: 35540396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variations of Pore Structure and Methane Adsorption of Continental Deformed Shales from Small-Scale Anticline and Syncline: Two Cases Study of the Triassic Yanchang Formation, Ordos Basin and Jurassic Yaojie Formation, Minhe Basin.
    Yang S; Yang F; Lyu C; Li C; Chen G; Ma M; Xue L
    ACS Omega; 2022 Dec; 7(51):48224-48239. PubMed ID: 36591141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental Study of the Relationship Between Particle Size and Methane Sorption Capacity in Shale.
    Gao L; Wang Z; Liang M; Yu Y; Zhou L
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. "Multi-temperature" method for high-pressure sorption measurements on moist shales.
    Gasparik M; Ghanizadeh A; Gensterblum Y; Krooss BM
    Rev Sci Instrum; 2013 Aug; 84(8):085116. PubMed ID: 24007116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on the Shale Gas Reservoir-Forming Characteristics of the Taiyuan Formation in the Eastern Qinshui Basin, China.
    Gao HT; Zhu YM; Shang FH; Chen CY
    J Nanosci Nanotechnol; 2021 Jan; 21(1):72-84. PubMed ID: 33213614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-Angle Investigation of the Fractal Characteristics of Nanoscale Pores in the Lower Cambrian Niutitang Shale and Their Implications for CH₄ Adsorption.
    Wang Y; Wu C; Qin Y; Liu S; Zhang R
    J Nanosci Nanotechnol; 2021 Jan; 21(1):156-167. PubMed ID: 33213620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methane-Water Interfacial Tension in Nanopores: A Dissipative Particle Dynamics Study.
    Mo F; Qi Z; Huang X; Yan W; Zhang W; Wang C; Fu W
    ACS Omega; 2024 Jul; 9(28):30794-30803. PubMed ID: 39035895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon Dioxide (CO₂) Adsorption Behaviour and Its Relationship with Nano-Structure in an Organic-Rich Shale: A Case Study of the Longmaxi Shale in Southeast Chongqing.
    Wang M; Xie W; Dai X; Huang K
    J Nanosci Nanotechnol; 2021 Jan; 21(1):362-370. PubMed ID: 33213636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pore Size Effect on Methane Adsorption in Mesoporous Silica Materials Studied by Small-Angle Neutron Scattering.
    Chiang WS; Fratini E; Baglioni P; Chen JH; Liu Y
    Langmuir; 2016 Sep; 32(35):8849-57. PubMed ID: 27512895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Giant Effect of CO
    Li J; Li B; Liu Y; Lang Y; Lan Y; Rahman SS
    Langmuir; 2024 Jul; 40(26):13622-13635. PubMed ID: 38904387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.