These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33522177)

  • 1. [Advances in Research of Chitosan-based Composites for Implanted Medical Devices].
    Liu R; Wang L; Liu H; Yang G; Li H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2021 Feb; 45(1):52-56. PubMed ID: 33522177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research Progress of Four-dimensional Hydrogels in Implantable Medical Devices].
    Liu R; Wang L; Liu H; Li H; Qin Q; Xing D
    Zhongguo Yi Liao Qi Xie Za Zhi; 2021 Sep; 45(5):524-529. PubMed ID: 34628765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of 3D Printing in Implantable Medical Devices.
    Wang Z; Yang Y
    Biomed Res Int; 2021; 2021():6653967. PubMed ID: 33521128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites.
    Wu CS
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():27-36. PubMed ID: 27612685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in materials and manufacturing of implantable devices for continuous health monitoring.
    Khan AA; Kim JH
    Biosens Bioelectron; 2024 Oct; 261():116461. PubMed ID: 38850737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials.
    Rusu VM; Ng CH; Wilke M; Tiersch B; Fratzl P; Peter MG
    Biomaterials; 2005 Sep; 26(26):5414-26. PubMed ID: 15814140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling personalized implant and controllable biosystem development through 3D printing.
    Nagarajan N; Dupret-Bories A; Karabulut E; Zorlutuna P; Vrana NE
    Biotechnol Adv; 2018; 36(2):521-533. PubMed ID: 29428560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives of 3D printing technology in orthopaedic surgery.
    Zamborsky R; Kilian M; Jacko P; Bernadic M; Hudak R
    Bratisl Lek Listy; 2019; 120(7):498-504. PubMed ID: 31602984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application.
    Thomas MS; Pillai PKS; Faria M; Cordeiro N; Barud H; Thomas S; Pothen LA
    J Mater Sci Mater Med; 2018 Aug; 29(9):137. PubMed ID: 30120580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg.
    Meenashisundaram GK; Wang N; Maskomani S; Lu S; Anantharajan SK; Dheen ST; Nai SML; Fuh JYH; Wei J
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110478. PubMed ID: 31923949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility assessment of porous chitosan-Nafion and chitosan-PTFE composites in vivo.
    Liu BJ; Ma LN; Su J; Jing WW; Wei MJ; Sha XZ
    J Biomed Mater Res A; 2014 Jun; 102(6):2055-60. PubMed ID: 23765695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Development in Liquid Metal Materials.
    He J; Liang S; Li F; Yang Q; Huang M; He Y; Fan X; Wu M
    ChemistryOpen; 2021 Mar; 10(3):360-372. PubMed ID: 33656291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized development of human organs using 3D printing technology.
    Radenkovic D; Solouk A; Seifalian A
    Med Hypotheses; 2016 Feb; 87():30-3. PubMed ID: 26826637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan based polymer/bioglass composites for tissue engineering applications.
    Vukajlovic D; Parker J; Bretcanu O; Novakovic K
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():955-967. PubMed ID: 30606607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising bio-composites of polypyrrole and chitosan: Surface protective and in vitro biocompatibility performance on 316L SS implants.
    Kumar AM; Suresh B; Das S; Obot IB; Adesina AY; Ramakrishna S
    Carbohydr Polym; 2017 Oct; 173():121-130. PubMed ID: 28732850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printing collagen/chitosan scaffold ameliorated axon regeneration and neurological recovery after spinal cord injury.
    Sun Y; Yang C; Zhu X; Wang JJ; Liu XY; Yang XP; An XW; Liang J; Dong HJ; Jiang W; Chen C; Wang ZG; Sun HT; Tu Y; Zhang S; Chen F; Li XH
    J Biomed Mater Res A; 2019 Sep; 107(9):1898-1908. PubMed ID: 30903675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic-Inorganic Composites Toward Biomaterial Application.
    Miyazaki T; Sugawara-Narutaki A; Ohtsuki C
    Front Oral Biol; 2015; 17():33-8. PubMed ID: 26201274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Present status and outlook of prosthodontic treatments based on three-dimensional printing technologies].
    Zhou YS
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2020 Oct; 55(10):716-721. PubMed ID: 33045781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.