BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 33522500)

  • 21. AMP Kinase Activation is Selectively Disrupted in the Ventral Midbrain of Mice Deficient in Parkin or PINK1 Expression.
    Hang L; Thundyil J; Goh GWY; Lim KL
    Neuromolecular Med; 2019 Mar; 21(1):25-32. PubMed ID: 30411223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In search of early neuroradiological biomarkers for Parkinson's Disease: Alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 -/- rats.
    Cai X; Qiao J; Knox T; Iriah S; Kulkarni P; Madularu D; Morrison T; Waszczak B; Hartner JC; Ferris CF
    Brain Res; 2019 Mar; 1706():58-67. PubMed ID: 30389398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson's disease, with insights into
    Wang Z; Chan SW; Zhao H; Miu KK; Chan WY
    Zool Res; 2023 May; 44(3):559-576. PubMed ID: 37161651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Animal models for familial Parkinson's disease].
    Takahashi R
    Rinsho Shinkeigaku; 2007 Nov; 47(11):938-40. PubMed ID: 18210841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease.
    Korecka JA; Moloney EB; Eggers R; Hobo B; Scheffer S; Ras-Verloop N; Pasterkamp RJ; Swaab DF; Smit AB; van Kesteren RE; Bossers K; Verhaagen J
    J Neurosci; 2017 Sep; 37(39):9361-9379. PubMed ID: 28842419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Developments in Genetic rat models of Parkinson's Disease.
    Creed RB; Goldberg MS
    Mov Disord; 2018 May; 33(5):717-729. PubMed ID: 29418019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.
    Clark IE; Dodson MW; Jiang C; Cao JH; Huh JR; Seol JH; Yoo SJ; Hay BA; Guo M
    Nature; 2006 Jun; 441(7097):1162-6. PubMed ID: 16672981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroacupuncture Promotes Recovery of Motor Function and Reduces Dopaminergic Neuron Degeneration in Rodent Models of Parkinson's Disease.
    Lin JG; Chen CJ; Yang HB; Chen YH; Hung SY
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28837077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loss-of-function rodent models for parkin and PINK1.
    Oliveras-Salvá M; Van Rompuy AS; Heeman B; Van den Haute C; Baekelandt V
    J Parkinsons Dis; 2011; 1(3):229-51. PubMed ID: 23939304
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polylysine-modified polyethylenimine (PEI-PLL) mediated VEGF gene delivery protects dopaminergic neurons in cell culture and in rat models of Parkinson's Disease (PD).
    Sheikh MA; Malik YS; Xing Z; Guo Z; Tian H; Zhu X; Chen X
    Acta Biomater; 2017 May; 54():58-68. PubMed ID: 28025049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diaminodiphenyl sulfone-induced parkin ameliorates age-dependent dopaminergic neuronal loss.
    Lee YI; Kang H; Ha YW; Chang KY; Cho SC; Song SO; Kim H; Jo A; Khang R; Choi JY; Lee Y; Park SC; Shin JH
    Neurobiol Aging; 2016 May; 41():1-10. PubMed ID: 27103513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accumulation of mitochondrial DNA deletions within dopaminergic neurons triggers neuroprotective mechanisms.
    Perier C; Bender A; García-Arumí E; Melià MJ; Bové J; Laub C; Klopstock T; Elstner M; Mounsey RB; Teismann P; Prolla T; Andreu AL; Vila M
    Brain; 2013 Aug; 136(Pt 8):2369-78. PubMed ID: 23884809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice.
    Noda S; Sato S; Fukuda T; Tada N; Uchiyama Y; Tanaka K; Hattori N
    Neurobiol Dis; 2020 Mar; 136():104717. PubMed ID: 31846738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species?
    Buhlman LM
    Mech Ageing Dev; 2017 Jan; 161(Pt A):112-120. PubMed ID: 27374431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular interaction between parkin and PINK1 in mammalian neuronal cells.
    Um JW; Stichel-Gunkel C; Lübbert H; Lee G; Chung KC
    Mol Cell Neurosci; 2009 Apr; 40(4):421-32. PubMed ID: 19167501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson's disease triggered by mitochondrial stress.
    Moisoi N; Fedele V; Edwards J; Martins LM
    Neuropharmacology; 2014 Feb; 77():350-7. PubMed ID: 24161480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide induction of Parkin translocation in PTEN-induced putative kinase 1 (PINK1) deficiency: functional role of neuronal nitric oxide synthase during mitophagy.
    Han JY; Kang MJ; Kim KH; Han PL; Kim HS; Ha JY; Son JH
    J Biol Chem; 2015 Apr; 290(16):10325-35. PubMed ID: 25716315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. rAAV-mediated nigral human parkin over-expression partially ameliorates motor deficits via enhanced dopamine neurotransmission in a rat model of Parkinson's disease.
    Manfredsson FP; Burger C; Sullivan LF; Muzyczka N; Lewin AS; Mandel RJ
    Exp Neurol; 2007 Oct; 207(2):289-301. PubMed ID: 17678648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice.
    Khang R; Park C; Shin JH
    Neuroscience; 2015 May; 294():182-92. PubMed ID: 25779963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.