These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33522548)

  • 21. Study on the copper(II)-doped MIL-101(Cr) and its performance in VOCs adsorption.
    Wang D; Wu G; Zhao Y; Cui L; Shin CH; Ryu MH; Cai J
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28109-28119. PubMed ID: 30069779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ag(I) Pyridine-Amidoxime Complex as the Catalysis Activity Domain for the Rapid Hydrolysis of Organothiophosphate-Based Nerve Agents: Mechanistic Evaluation and Application.
    Zheng S; Pan J; Wang J; Liu S; Zhou T; Wang L; Jia H; Chen Z; Peng Q; Guo T
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34428-34437. PubMed ID: 34278774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen.
    Sabouni R; Gomaa HG
    Soft Matter; 2015 Jun; 11(22):4507-16. PubMed ID: 25953152
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photothermally Enhanced Detoxification of Chemical Warfare Agent Simulants Using Bioinspired Core-Shell Dopamine-Melanin@Metal-Organic Frameworks and Their Fabrics.
    Yao A; Jiao X; Chen D; Li C
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):7927-7935. PubMed ID: 30688436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aqueous-Phase Destruction of Nerve-Agent Simulants at Copper Single Atoms in UiO-66.
    Johnson EM; Boyanich MC; Gibbons B; Sapienza NS; Yang X; Karim AM; Morris JR; Troya D; Morris AJ
    Inorg Chem; 2022 Jun; 61(22):8585-8591. PubMed ID: 35613459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photothermal graphene/UiO-66-NH
    Song L; Zhao T; Yang D; Wang X; Hao X; Liu Y; Zhang S; Yu ZZ
    J Hazard Mater; 2020 Jul; 393():122332. PubMed ID: 32120207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and application of α-Fe
    Khodkar A; Khezri SM; Pendashteh A; Khoramnejadian S; Mamani L
    Toxicol Ind Health; 2018 Dec; 34(12):842-859. PubMed ID: 30415607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Customized mesoporous metal organic frameworks engender stable enzymatic nanoreactors.
    Zhang L; Baslyman W; Yang P; Khashab NM
    Chem Commun (Camb); 2019 Jan; 55(5):620-623. PubMed ID: 30543212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel composite material polyoxovanadate@MIL-101(Cr): a highly efficient electrocatalyst for ascorbic acid oxidation.
    Fernandes DM; Barbosa AD; Pires J; Balula SS; Cunha-Silva L; Freire C
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13382-90. PubMed ID: 24308331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. X-ray structures of human bile-salt activated lipase conjugated to nerve agents surrogates.
    Touvrey C; Courageux C; Guillon V; Terreux R; Nachon F; Brazzolotto X
    Toxicology; 2019 Jan; 411():15-23. PubMed ID: 30359675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MOF-Polymer Mixed Matrix Membranes as Chemical Protective Layers for Solid-Phase Detoxification of Toxic Organophosphates.
    Luo HB; Lin FR; Liu ZY; Kong YR; Idrees KB; Liu Y; Zou Y; Farha OK; Ren XM
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2933-2939. PubMed ID: 36602325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cooperative Catalysis between Dual Copper Centers in a Metal-Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants.
    Wang QY; Sun ZB; Zhang M; Zhao SN; Luo P; Gong CH; Liu WX; Zang SQ
    J Am Chem Soc; 2022 Nov; 144(46):21046-21055. PubMed ID: 36316180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly selective fluorescent recognition of histidine by a crown ether-terpyridine-Zn(II) sensor.
    Du J; Huang Z; Yu XQ; Pu L
    Chem Commun (Camb); 2013 Jun; 49(47):5399-401. PubMed ID: 23652545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal-organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study.
    Wang T; Wang J; Zhang C; Yang Z; Dai X; Cheng M; Hou X
    Analyst; 2015 Aug; 140(15):5308-16. PubMed ID: 26076497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hydrolysis of 5'-CAP dinucleotide analogs: catalysis by bi- and terpyridine complexes of Cu²⁺ and Zn²⁺ ions.
    Stachelska-Wierzchowska A; Wieczorek ZJ; Wierzchowski J
    Nucleosides Nucleotides Nucleic Acids; 2012; 31(1):61-71. PubMed ID: 22257211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ferrocene-modified iron-based metal-organic frameworks as an enhanced catalyst for activating oxone to degrade pollutants in water.
    Zhang MW; Yang MT; Tong S; Lin KA
    Chemosphere; 2018 Dec; 213():295-304. PubMed ID: 30237042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ascorbic Acid Determination Based on Electrocatalytic Behavior of Metal-Organic Framework MIL-101-(Cr) at Modified Carbon-Paste Electrode.
    Tashkhourian J; Valizadeh H; Abbaspour A
    J AOAC Int; 2019 Mar; 102(2):625-632. PubMed ID: 30103843
    [No Abstract]   [Full Text] [Related]  

  • 38. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives.
    Oudi S; Oveisi AR; Daliran S; Khajeh M; Teymoori E
    J Colloid Interface Sci; 2020 Mar; 561():782-792. PubMed ID: 31761467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of a hybrid biocatalyst containing a covalently-linked terpyridine metal complex within a cavity of aponitrobindin.
    Himiyama T; Sauer DF; Onoda A; Spaniol TP; Okuda J; Hayashi T
    J Inorg Biochem; 2016 May; 158():55-61. PubMed ID: 26786596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols.
    Yang F; Yang CX; Yan XP
    Talanta; 2015 May; 137():136-42. PubMed ID: 25770616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.