These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 33522825)
1. Ultrasound-Mediated Remotely Controlled Nanovaccine Delivery for Tumor Vaccination and Individualized Cancer Immunotherapy. Meng Z; Zhang Y; She J; Zhou X; Xu J; Han X; Wang C; Zhu M; Liu Z Nano Lett; 2021 Feb; 21(3):1228-1237. PubMed ID: 33522825 [TBL] [Abstract][Full Text] [Related]
2. A programmable oral bacterial hydrogel for controllable production and release of nanovaccine for tumor immunotherapy. Zhang Y; Kang R; Zhang X; Pang G; Li L; Han C; Liu B; Xue X; Liu J; Sun T; Wang T; Liu P; Wang H Biomaterials; 2023 Aug; 299():122147. PubMed ID: 37182418 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Antitumor Immune Responses via a Self-Assembled Carrier-Free Nanovaccine. Liu D; Deng B; Liu Z; Ma B; Leng X; Kong D; Ji T; Liu L Nano Lett; 2021 May; 21(9):3965-3973. PubMed ID: 33886338 [TBL] [Abstract][Full Text] [Related]
4. Co-localized delivery of nanomedicine and nanovaccine augments the postoperative cancer immunotherapy by amplifying T-cell responses. Liu X; Feng Z; Wang C; Su Q; Song H; Zhang C; Huang P; Liang XJ; Dong A; Kong D; Wang W Biomaterials; 2020 Feb; 230():119649. PubMed ID: 31791843 [TBL] [Abstract][Full Text] [Related]
5. Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Zhou L; Hou B; Wang D; Sun F; Song R; Shao Q; Wang H; Yu H; Li Y Nano Lett; 2020 Jun; 20(6):4393-4402. PubMed ID: 32459969 [TBL] [Abstract][Full Text] [Related]
6. Intratumoral administration of STING-activating nanovaccine enhances T cell immunotherapy. Jiang X; Wang J; Zheng X; Liu Z; Zhang X; Li Y; Wilhelm J; Cao J; Huang G; Zhang J; Sumer B; Lea J; Lu Z; Gao J; Luo M J Immunother Cancer; 2022 May; 10(5):. PubMed ID: 35623658 [TBL] [Abstract][Full Text] [Related]
7. Hybrid Membrane Nanovaccines Combined with Immune Checkpoint Blockade to Enhance Cancer Immunotherapy. Zhao P; Xu Y; Ji W; Li L; Qiu L; Zhou S; Qian Z; Zhang H Int J Nanomedicine; 2022; 17():73-89. PubMed ID: 35027827 [TBL] [Abstract][Full Text] [Related]
8. A generally minimalist strategy of constructing biomineralized high-efficiency personalized nanovaccine combined with immune checkpoint blockade for cancer immunotherapy. Zhang S; Feng Y; Meng M; Li Z; Li H; Lin L; Xu C; Chen J; Hao K; Tang Z; Tian H; Chen X Biomaterials; 2022 Oct; 289():121794. PubMed ID: 36113330 [TBL] [Abstract][Full Text] [Related]
9. A Biomimetic Autophagosomes-Based Nanovaccine Boosts Anticancer Immunity. Qu L; Cui G; Sun Y; Ye R; Sun Y; Meng F; Wang S; Zhong Z Adv Mater; 2024 Oct; 36(40):e2409590. PubMed ID: 39194369 [TBL] [Abstract][Full Text] [Related]
10. Nanobiomaterial-based vaccination immunotherapy of cancer. Chen F; Wang Y; Gao J; Saeed M; Li T; Wang W; Yu H Biomaterials; 2021 Mar; 270():120709. PubMed ID: 33581608 [TBL] [Abstract][Full Text] [Related]
11. Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy. Zhou S; Huang Y; Chen Y; Liu S; Xu M; Jiang T; Song Q; Jiang G; Gu X; Gao X; Chen J Biomaterials; 2020 Mar; 235():119795. PubMed ID: 32014739 [TBL] [Abstract][Full Text] [Related]
12. Cancer Cell Membrane-Coated Adjuvant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. Yang R; Xu J; Xu L; Sun X; Chen Q; Zhao Y; Peng R; Liu Z ACS Nano; 2018 Jun; 12(6):5121-5129. PubMed ID: 29771487 [TBL] [Abstract][Full Text] [Related]
13. RNA Origami Functions as a Self-Adjuvanted Nanovaccine Platform for Cancer Immunotherapy. Yip T; Qi X; Yan H; Chang Y ACS Nano; 2024 Feb; 18(5):4056-4067. PubMed ID: 38270089 [TBL] [Abstract][Full Text] [Related]
14. Manganese oxide-constructed multifunctional biomimetic nanovaccine for robust tumor-specific T cell priming and chemodynamic therapy. Li T; Chen G; Lin L; Li B; Wang X; Chen Y; Huang W; Cai M; Xiao Z; Shuai X; Zhu K Biomaterials; 2024 Sep; 309():122626. PubMed ID: 38795524 [TBL] [Abstract][Full Text] [Related]
15. Minimalist Nanovaccine with Optimized Amphiphilic Copolymers for Cancer Immunotherapy. Niu L; Miao Y; Cao Z; Wei T; Zhu J; Li M; Bai B; Chen L; Liu N; Pan F; Zhu J; Wang C; Yang Y; Chen Q ACS Nano; 2024 Jan; 18(4):3349-3361. PubMed ID: 38230639 [TBL] [Abstract][Full Text] [Related]
16. Acidity-responsive polyphenol-coordinated nanovaccines for improving tumor immunotherapy Qiu H; Wang S; Huang R; Liu X; Li L; Liu Z; Wang A; Ji S; Liang H; Jiang BP; Shen XC Biomater Sci; 2024 Jun; 12(12):3175-3192. PubMed ID: 38742916 [TBL] [Abstract][Full Text] [Related]
17. Facile preparation of a metal-phenolic network-based lymph node targeting nanovaccine for antitumor immunotherapy. Su Q; Liu Z; Du R; Chen X; Chen L; Fu Z; Luo X; Yang Y; Shi X Acta Biomater; 2023 Mar; 158():510-524. PubMed ID: 36603733 [TBL] [Abstract][Full Text] [Related]
18. Self-Adjuvanting Polyguanidine Nanovaccines for Cancer Immunotherapy. Zhang X; Wang K; Zhao Z; Shan X; Wang Y; Feng Z; Li B; Luo C; Chen X; Sun J ACS Nano; 2024 Mar; 18(9):7136-7147. PubMed ID: 38407021 [TBL] [Abstract][Full Text] [Related]
19. Delivery of nanovaccine towards lymphoid organs: recent strategies in enhancing cancer immunotherapy. Cai T; Liu H; Zhang S; Hu J; Zhang L J Nanobiotechnology; 2021 Nov; 19(1):389. PubMed ID: 34823541 [TBL] [Abstract][Full Text] [Related]
20. Self-adjuvanting cancer nanovaccines. Liao Z; Huang J; Lo PC; Lovell JF; Jin H; Yang K J Nanobiotechnology; 2022 Jul; 20(1):345. PubMed ID: 35883176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]