These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33522898)

  • 1. DeepGRN: prediction of transcription factor binding site across cell-types using attention-based deep neural networks.
    Chen C; Hou J; Shi X; Yang H; Birchler JA; Cheng J
    BMC Bioinformatics; 2021 Feb; 22(1):38. PubMed ID: 33522898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BERT-TFBS: a novel BERT-based model for predicting transcription factor binding sites by transfer learning.
    Wang K; Zeng X; Zhou J; Liu F; Luan X; Wang X
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38701417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Transcription Factor Binding Sites With an Attention Augmented Convolutional Neural Network.
    Jing Zhang F; Zhang SW; Zhang S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3614-3623. PubMed ID: 34752400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the interpretability of transcription factor binding site prediction using attention mechanism.
    Park S; Koh Y; Jeon H; Kim H; Yeo Y; Kang J
    Sci Rep; 2020 Aug; 10(1):13413. PubMed ID: 32770026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method.
    Zhang Y; Wang Z; Zeng Y; Zhou J; Zou Q
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34272562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network.
    Han K; Shen LC; Zhu YH; Xu J; Song J; Yu DJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34664074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel convolution attention model for predicting transcription factor binding sites by combination of sequence and shape.
    Zhang Y; Wang Z; Zeng Y; Liu Y; Xiong S; Wang M; Zhou J; Zou Q
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FactorNet: A deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data.
    Quang D; Xie X
    Methods; 2019 Aug; 166():40-47. PubMed ID: 30922998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism.
    Gong M; He Y; Wang M; Zhang Y; Ding C
    Comput Biol Chem; 2023 Oct; 106():107923. PubMed ID: 37598467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation of local features and global representations by a dual-branch network for transcription factor binding sites prediction.
    Yu Y; Ding P; Gao H; Liu G; Zhang F; Yu B
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36748992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A survey on protein-DNA-binding sites in computational biology.
    Zhang Y; Bao W; Cao Y; Cong H; Chen B; Chen Y
    Brief Funct Genomics; 2022 Sep; 21(5):357-375. PubMed ID: 35652477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Romulus: robust multi-state identification of transcription factor binding sites from DNase-seq data.
    Jankowski A; Tiuryn J; Prabhakar S
    Bioinformatics; 2016 Aug; 32(16):2419-26. PubMed ID: 27153645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting transcription factor binding using ensemble random forest models.
    Behjati Ardakani F; Schmidt F; Schulz MH
    F1000Res; 2018; 7():1603. PubMed ID: 31723409
    [No Abstract]   [Full Text] [Related]  

  • 18. Anchor: trans-cell type prediction of transcription factor binding sites.
    Li H; Quang D; Guan Y
    Genome Res; 2019 Feb; 29(2):281-292. PubMed ID: 30567711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility.
    Liu Q; Hua K; Zhang X; Wong WH; Jiang R
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):496-507. PubMed ID: 35293310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-adaptive neural networks improve cross-species prediction of transcription factor binding.
    Cochran K; Srivastava D; Shrikumar A; Balsubramani A; Hardison RC; Kundaje A; Mahony S
    Genome Res; 2022 Mar; 32(3):512-523. PubMed ID: 35042722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.