These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 33523199)
1. Relative Contributions of All-Trans and 11-Cis Retinal to Formation of Lipofuscin and A2E Accumulating in Mouse Retinal Pigment Epithelium. Boyer NP; Thompson DA; Koutalos Y Invest Ophthalmol Vis Sci; 2021 Feb; 62(2):1. PubMed ID: 33523199 [TBL] [Abstract][Full Text] [Related]
2. Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. Boyer NP; Higbee D; Currin MB; Blakeley LR; Chen C; Ablonczy Z; Crouch RK; Koutalos Y J Biol Chem; 2012 Jun; 287(26):22276-86. PubMed ID: 22570475 [TBL] [Abstract][Full Text] [Related]
3. Limited roles of Rdh8, Rdh12, and Abca4 in all-trans-retinal clearance in mouse retina. Maeda A; Golczak M; Maeda T; Palczewski K Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5435-43. PubMed ID: 19553623 [TBL] [Abstract][Full Text] [Related]
4. The 11-cis Retinal Origins of Lipofuscin in the Retina. Adler L; Boyer NP; Chen C; Ablonczy Z; Crouch RK; Koutalos Y Prog Mol Biol Transl Sci; 2015; 134():e1-12. PubMed ID: 26310175 [TBL] [Abstract][Full Text] [Related]
5. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease--correlation with accumulation of A2E, retinal function, and histology. Charbel Issa P; Barnard AR; Singh MS; Carter E; Jiang Z; Radu RA; Schraermeyer U; MacLaren RE Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5602-12. PubMed ID: 23761084 [TBL] [Abstract][Full Text] [Related]
6. Aberrant Buildup of All-Trans-Retinal Dimer, a Nonpyridinium Bisretinoid Lipofuscin Fluorophore, Contributes to the Degeneration of the Retinal Pigment Epithelium. Zhao J; Liao Y; Chen J; Dong X; Gao Z; Zhang H; Wu X; Liu Z; Wu Y Invest Ophthalmol Vis Sci; 2017 Feb; 58(2):1063-1075. PubMed ID: 28192797 [TBL] [Abstract][Full Text] [Related]
7. Lipofuscin and A2E accumulate with age in the retinal pigment epithelium of Nrl-/- mice. Boyer NP; Tang PH; Higbee D; Ablonczy Z; Crouch RK; Koutalos Y Photochem Photobiol; 2012; 88(6):1373-7. PubMed ID: 22417141 [TBL] [Abstract][Full Text] [Related]
8. The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Kim SR; Jang YP; Jockusch S; Fishkin NE; Turro NJ; Sparrow JR Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19273-8. PubMed ID: 18048333 [TBL] [Abstract][Full Text] [Related]
9. Spatial localization of A2E in the retinal pigment epithelium. Grey AC; Crouch RK; Koutalos Y; Schey KL; Ablonczy Z Invest Ophthalmol Vis Sci; 2011 Jun; 52(7):3926-33. PubMed ID: 21357388 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Mata NL; Weng J; Travis GH Proc Natl Acad Sci U S A; 2000 Jun; 97(13):7154-9. PubMed ID: 10852960 [TBL] [Abstract][Full Text] [Related]
11. Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Mata NL; Tzekov RT; Liu X; Weng J; Birch DG; Travis GH Invest Ophthalmol Vis Sci; 2001 Jul; 42(8):1685-90. PubMed ID: 11431429 [TBL] [Abstract][Full Text] [Related]
12. A2E, a byproduct of the visual cycle. Sparrow JR; Fishkin N; Zhou J; Cai B; Jang YP; Krane S; Itagaki Y; Nakanishi K Vision Res; 2003 Dec; 43(28):2983-90. PubMed ID: 14611934 [TBL] [Abstract][Full Text] [Related]
13. Photodegradation of retinal bisretinoids in mouse models and implications for macular degeneration. Ueda K; Zhao J; Kim HJ; Sparrow JR Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6904-9. PubMed ID: 27274068 [TBL] [Abstract][Full Text] [Related]
14. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors. Jin HL; Lee SC; Kwon YS; Choung SY; Jeong KW J Pharm Biomed Anal; 2016 Jan; 117():560-7. PubMed ID: 26604166 [TBL] [Abstract][Full Text] [Related]
15. Novel lipofuscin bisretinoids prominent in human retina and in a model of recessive Stargardt disease. Wu Y; Fishkin NE; Pande A; Pande J; Sparrow JR J Biol Chem; 2009 Jul; 284(30):20155-66. PubMed ID: 19478335 [TBL] [Abstract][Full Text] [Related]
16. Fundus autofluorescence and photoreceptor cell rosettes in mouse models. Flynn E; Ueda K; Auran E; Sullivan JM; Sparrow JR Invest Ophthalmol Vis Sci; 2014 Jul; 55(9):5643-52. PubMed ID: 25015357 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of the visual cycle by A2E through direct interaction with RPE65 and implications in Stargardt disease. Moiseyev G; Nikolaeva O; Chen Y; Farjo K; Takahashi Y; Ma JX Proc Natl Acad Sci U S A; 2010 Oct; 107(41):17551-6. PubMed ID: 20876139 [TBL] [Abstract][Full Text] [Related]
19. A novel bisretinoid of retina is an adduct on glycerophosphoethanolamine. Yamamoto K; Yoon KD; Ueda K; Hashimoto M; Sparrow JR Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9084-90. PubMed ID: 22039245 [TBL] [Abstract][Full Text] [Related]
20. Increased cone sensitivity to ABCA4 deficiency provides insight into macular vision loss in Stargardt's dystrophy. Conley SM; Cai X; Makkia R; Wu Y; Sparrow JR; Naash MI Biochim Biophys Acta; 2012 Jul; 1822(7):1169-79. PubMed ID: 22033104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]