BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 33523494)

  • 41. Determinants of CRISPR Cas12a nuclease activation by DNA and RNA targets.
    Nalefski EA; Kooistra RM; Parikh I; Hedley S; Rajaraman K; Madan D
    Nucleic Acids Res; 2024 May; 52(8):4502-4522. PubMed ID: 38477377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CRISPR-Cas12a System for Biosensing and Gene Regulation.
    Shi Y; Fu X; Yin Y; Peng F; Yin X; Ke G; Zhang X
    Chem Asian J; 2021 Apr; 16(8):857-867. PubMed ID: 33638271
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Evaluation of Guide RNA Transcripts with a 3'-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation.
    Berkhout B; Gao Z; Herrera-Carrillo E
    Methods Mol Biol; 2021; 2167():205-224. PubMed ID: 32712922
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles.
    Ageely EA; Chilamkurthy R; Jana S; Abdullahu L; O'Reilly D; Jensik PJ; Damha MJ; Gagnon KT
    Nat Commun; 2021 Nov; 12(1):6591. PubMed ID: 34782635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Live-cell imaging reveals the trade-off between target search flexibility and efficiency for Cas9 and Cas12a.
    Olivi L; Bagchus C; Pool V; Bekkering E; Speckner K; Offerhaus H; Wu WY; Depken M; Martens KJA; Staals RHJ; Hohlbein J
    Nucleic Acids Res; 2024 May; 52(9):5241-5256. PubMed ID: 38647045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases.
    Jones SK; Hawkins JA; Johnson NV; Jung C; Hu K; Rybarski JR; Chen JS; Doudna JA; Press WH; Finkelstein IJ
    Nat Biotechnol; 2021 Jan; 39(1):84-93. PubMed ID: 32895548
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9 nickase mediated signal amplification integrating with the trans-cleavage activity of Cas12a for highly selective and sensitive detection of single base mutations.
    Fan XW; Gao ZF; Ling DD; Wang DH; Cui Y; Du HQ; Li CL; Zhou X
    Mil Med Res; 2024 Apr; 11(1):25. PubMed ID: 38650045
    [No Abstract]   [Full Text] [Related]  

  • 48. Three novel Cas12a orthologs with robust DNA cleavage activity suitable for nucleic acid detection.
    Liu X; Qiu X; Han L; Yue Y; Xu S; Li F; Yao J; Sun L; Li Z
    Gene; 2023 Feb; 852():147055. PubMed ID: 36400115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
    Yang H; Patel DJ
    Mol Cell; 2017 Jul; 67(1):117-127.e5. PubMed ID: 28602637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Medium-throughput in vitro detection of DNA cleavage by CRISPR-Cas12a.
    Creutzburg SCA; Swartjes T; van der Oost J
    Methods; 2020 Feb; 172():27-31. PubMed ID: 31726224
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endonuclease-Assisted PAM-free Recombinase Polymerase Amplification Coupling with CRISPR/Cas12a (E-PfRPA/Cas) for Sensitive Detection of DNA Methylation.
    Zhou S; Dong J; Deng L; Wang G; Yang M; Wang Y; Huo D; Hou C
    ACS Sens; 2022 Oct; 7(10):3032-3040. PubMed ID: 36214815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays.
    Liao C; Slotkowski RA; Achmedov T; Beisel CL
    RNA Biol; 2019 Apr; 16(4):404-412. PubMed ID: 30252595
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural basis for mismatch surveillance by CRISPR-Cas9.
    Bravo JPK; Liu MS; Hibshman GN; Dangerfield TL; Jung K; McCool RS; Johnson KA; Taylor DW
    Nature; 2022 Mar; 603(7900):343-347. PubMed ID: 35236982
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Harnessing noncanonical crRNA for highly efficient genome editing.
    Xun G; Zhu Z; Singh N; Lu J; Jain PK; Zhao H
    Nat Commun; 2024 May; 15(1):3823. PubMed ID: 38714643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites.
    Zhang Q; Yin K; Liu G; Li S; Li M; Qiu JL
    Sci China Life Sci; 2020 Dec; 63(12):1918-1927. PubMed ID: 32382982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel Type V-A CRISPR Effectors Are Active Nucleases with Expanded Targeting Capabilities.
    Aliaga Goltsman DS; Alexander LM; Devoto AE; Albers JB; Liu J; Butterfield CN; Brown CT; Thomas BC
    CRISPR J; 2020 Dec; 3(6):454-461. PubMed ID: 33146573
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure of the miniature type V-F CRISPR-Cas effector enzyme.
    Takeda SN; Nakagawa R; Okazaki S; Hirano H; Kobayashi K; Kusakizako T; Nishizawa T; Yamashita K; Nishimasu H; Nureki O
    Mol Cell; 2021 Feb; 81(3):558-570.e3. PubMed ID: 33333018
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Guide RNA functional modules direct Cas9 activity and orthogonality.
    Briner AE; Donohoue PD; Gomaa AA; Selle K; Slorach EM; Nye CH; Haurwitz RE; Beisel CL; May AP; Barrangou R
    Mol Cell; 2014 Oct; 56(2):333-339. PubMed ID: 25373540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a.
    Liu W; Tang D; Wang H; Lian J; Huang L; Xu Z
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):8911-8922. PubMed ID: 31583448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.