These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33523548)

  • 21. Modulating perceptual complexity and load reveals degradation of the visual working memory network in ageing.
    Wijeakumar S; Magnotta VA; Spencer JP
    Neuroimage; 2017 Aug; 157():464-475. PubMed ID: 28627364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Occipital, parietal, and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory.
    Yu Q; Shim WM
    Neuroimage; 2017 Aug; 157():97-107. PubMed ID: 28559190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The voluntary utilization of visual working memory.
    Kvitelashvili S; Kessler Y
    Sci Rep; 2024 Apr; 14(1):7987. PubMed ID: 38575646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual Working Memory Load Disrupts Template-guided Attentional Selection during Visual Search.
    Berggren N; Eimer M
    J Cogn Neurosci; 2018 Dec; 30(12):1902-1915. PubMed ID: 30125222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior Intraparietal Sulcus Controls the Variability of Visual Working Memory Precision.
    Galeano Weber EM; Peters B; Hahn T; Bledowski C; Fiebach CJ
    J Neurosci; 2016 May; 36(20):5623-35. PubMed ID: 27194340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual Working Memory Enhances the Neural Response to Matching Visual Input.
    Gayet S; Guggenmos M; Christophel TB; Haynes JD; Paffen CLE; Van der Stigchel S; Sterzer P
    J Neurosci; 2017 Jul; 37(28):6638-6647. PubMed ID: 28592696
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frontoparietal Beta Amplitude Modulation and its Interareal Cross-frequency Coupling in Visual Working Memory.
    Liang WK; Tseng P; Yeh JR; Huang NE; Juan CH
    Neuroscience; 2021 Apr; 460():69-87. PubMed ID: 33588001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of parietal cortex in verbal working memory.
    Jonides J; Schumacher EH; Smith EE; Koeppe RA; Awh E; Reuter-Lorenz PA; Marshuetz C; Willis CR
    J Neurosci; 1998 Jul; 18(13):5026-34. PubMed ID: 9634568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oculomotor capture reveals trial-by-trial neural correlates of attentional guidance by contents of visual working memory.
    Beck VM; Vickery TJ
    Cortex; 2020 Jan; 122():159-169. PubMed ID: 30392969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validating an image-based fNIRS approach with fMRI and a working memory task.
    Wijeakumar S; Huppert TJ; Magnotta VA; Buss AT; Spencer JP
    Neuroimage; 2017 Feb; 147():204-218. PubMed ID: 27939793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Re-evaluating the relationships among filtering activity, unnecessary storage, and visual working memory capacity.
    Emrich SM; Busseri MA
    Cogn Affect Behav Neurosci; 2015 Sep; 15(3):589-97. PubMed ID: 25690338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural and Behavioral Evidence for an Online Resetting Process in Visual Working Memory.
    Balaban H; Luria R
    J Neurosci; 2017 Feb; 37(5):1225-1239. PubMed ID: 28011745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Task-dependent effects of voluntary space-based and involuntary feature-based attention on visual working memory.
    Qian J; Zhang K; Lei Q; Han Y; Li W
    Psychol Res; 2020 Jul; 84(5):1304-1319. PubMed ID: 30840142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of fMRI activation at 3 and 1.5 T during perceptual, cognitive, and affective processing.
    Krasnow B; Tamm L; Greicius MD; Yang TT; Glover GH; Reiss AL; Menon V
    Neuroimage; 2003 Apr; 18(4):813-26. PubMed ID: 12725758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Object maintenance beyond their visible parts in working memory.
    Chen S; Töllner T; Müller HJ; Conci M
    J Neurophysiol; 2018 Jan; 119(1):347-355. PubMed ID: 29070629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constrained by our connections: white matter's key role in interindividual variability in visual working memory capacity.
    Golestani AM; Miles L; Babb J; Castellanos FX; Malaspina D; Lazar M
    J Neurosci; 2014 Nov; 34(45):14913-8. PubMed ID: 25378158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual working memory impairments for single items following medial temporal lobe damage.
    Goodrich RI; Baer TL; Quent JA; Yonelinas AP
    Neuropsychologia; 2019 Nov; 134():107227. PubMed ID: 31614154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The underlying mechanism for the connection between visual long-term memory and visual working memory].
    Zhang Y; Liang TF; Chen JT; Ye CX; Liu Q
    Sheng Li Xue Bao; 2019 Feb; 71(1):62-72. PubMed ID: 30778505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pop-out and pop-in: Visual working memory advantages for unique items.
    Rajsic J; Sun SZ; Huxtable L; Pratt J; Ferber S
    Psychon Bull Rev; 2016 Dec; 23(6):1787-1793. PubMed ID: 27025501
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity.
    Ambrose JP; Wijeakumar S; Buss AT; Spencer JP
    Front Syst Neurosci; 2016; 10():33. PubMed ID: 27147986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.