These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 33523621)

  • 41. Antireflective coatings with enhanced adhesion strength.
    Khan SB; Wu H; Fei Z; Ning S; Zhang Z
    Nanoscale; 2017 Aug; 9(31):11047-11054. PubMed ID: 28604899
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Al
    Khan SB; Wu H; Xie Z; Wang W; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36327-36337. PubMed ID: 28956908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale assembly of colloidal nanoparticles and fabrication of periodic subwavelength structures.
    Min WL; Jiang P; Jiang B
    Nanotechnology; 2008 Nov; 19(47):475604. PubMed ID: 21836279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Luminescent antireflective coatings with disordered surface nanostructures fabricated by liquid processes.
    Tanaka S; Fujihara S
    Langmuir; 2011 Mar; 27(6):2929-35. PubMed ID: 21338102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness.
    Berman D; Guha S; Lee B; Elam JW; Darling SB; Shevchenko EV
    ACS Nano; 2017 Mar; 11(3):2521-2530. PubMed ID: 28139905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings.
    Tao F; Hiralal P; Ren L; Wang Y; Dai Q; Amaratunga GA; Zhou H
    Nanoscale Res Lett; 2014; 9(1):361. PubMed ID: 25136278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of silica-based multilayer films with self-cleaning and antireflective properties.
    Nimittrakoolchai OU; Supothina S
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8880-4. PubMed ID: 22400275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.
    Wang K; He J
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11189-11196. PubMed ID: 29578679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region.
    Camargo KC; Michels AF; Rodembusch FS; Horowitz F
    Chem Commun (Camb); 2012 May; 48(41):4992-4. PubMed ID: 22509490
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-Temperature Preparation of Mechanically Robust and Contamination-Resistant Antireflective Coatings for Flexible Polymeric Glasses via Embedding of Silica Nanoparticles and HMDS Modification.
    Wang X; Zhao H; Su Y; Zhang C; Feng C; Liu Q; Shen J
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37084-37093. PubMed ID: 31523966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-Layered Hollow Nanospheres Based Coatings with Ultrahigh-Performance of Energy-Saving, Antireflection, and Self-Cleaning for Smart Windows.
    Yao L; Qu Z; Pang Z; Li J; Tang S; He J; Feng L
    Small; 2018 Aug; 14(34):e1801661. PubMed ID: 30058237
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing.
    Han G; Nguyen TB; Park S; Jung Y; Lee J; Lim H
    ACS Nano; 2020 Aug; 14(8):10198-10209. PubMed ID: 32700892
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Self-cleaning antireflective optical coatings.
    Guldin S; Kohn P; Stefik M; Song J; Divitini G; Ecarla F; Ducati C; Wiesner U; Steiner U
    Nano Lett; 2013; 13(11):5329-35. PubMed ID: 24124901
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films.
    Manabe K; Nishizawa S; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13985-93. PubMed ID: 25093243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transparent, self-cleaning, scratch resistance and environment friendly coatings for glass substrate and their potential applications in outdoor and automobile industry.
    Shahzadi P; Gilani SR; Rana BB; Ghaffar A; Munir A
    Sci Rep; 2021 Oct; 11(1):20743. PubMed ID: 34671061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ assembly of raspberry- and mulberry-like silica nanospheres toward antireflective and antifogging coatings.
    Li X; He J
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2204-11. PubMed ID: 22448848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface structured optical coatings with near-perfect broadband and wide-angle antireflective properties.
    Perl EE; McMahon WE; Farrell RM; DenBaars SP; Speck JS; Bowers JE
    Nano Lett; 2014 Oct; 14(10):5960-4. PubMed ID: 25238041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanostructured Hybrid-Material Transparent Surface with Antireflection Properties and a Facile Fabrication Process.
    Rombaut J; Fernandez M; Mazumder P; Pruneri V
    ACS Omega; 2019 Nov; 4(22):19840-19846. PubMed ID: 31788616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vapor Phase Ammonia Curing to Improve the Mechanical Properties of Antireflection Optical Coatings Designed for Power Laser Optics.
    Avice J; Brotons G; Ruello P; Vaudel G; Guediche A; Piombini H
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.