These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33523645)

  • 41. Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker.
    Tramacere F; Appel E; Mazzolai B; Gorb SN
    Beilstein J Nanotechnol; 2014; 5():561-5. PubMed ID: 24991492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Octopus-like suction cups: from natural to artificial solutions.
    Tramacere F; Follador M; Pugno NM; Mazzolai B
    Bioinspir Biomim; 2015 May; 10(3):035004. PubMed ID: 25970079
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and mechanical properties of Octopus vulgaris suckers.
    Tramacere F; Kovalev A; Kleinteich T; Gorb SN; Mazzolai B
    J R Soc Interface; 2014 Feb; 11(91):20130816. PubMed ID: 24284894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Symmetrical Wrinkles in Single-Component Elastomers with Fingerprint-Inspired Robust Isotropic Dry Adhesive Capabilities.
    Lin CH; Huang CY; Ho JY; Hsueh HY
    ACS Appl Mater Interfaces; 2020 May; 12(19):22365-22377. PubMed ID: 32237732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Octopus-inspired sucker to absorb soft tissues: stiffness gradient and acetabular protuberance improve the adsorption effect.
    Wang Y; Sun G; He Y; Zhou K; Zhu L
    Bioinspir Biomim; 2022 Mar; 17(3):. PubMed ID: 35235920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Soft End Effector Inspired by Cephalopod Suckers and Augmented by a Dielectric Elastomer Actuator.
    Sholl N; Moss A; Kier WM; Mohseni K
    Soft Robot; 2019 Jun; 6(3):356-367. PubMed ID: 30848723
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A protein-coated micro-sucker patch inspired by octopus for adhesion in wet conditions.
    Meloni G; Tricinci O; Degl'Innocenti A; Mazzolai B
    Sci Rep; 2020 Sep; 10(1):15480. PubMed ID: 32968184
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature-Induced Switchable Adhesion using Nickel-Titanium-Polydimethylsiloxane Hybrid Surfaces.
    Frensemeier M; Kaiser JS; Frick CP; Schneider AS; Arzt E; Fertig RS; Kroner E
    Adv Funct Mater; 2015 May; 25(20):3013-3021. PubMed ID: 26120295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oligomer adsorption on dry and wet collagen surfaces.
    Lim KP; Tan LP
    Acta Biomater; 2010 Jul; 6(7):2674-80. PubMed ID: 20083241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced reversible adhesion of dopamine methacrylamide-coated elastomer microfibrillar structures under wet conditions.
    Glass P; Chung H; Washburn NR; Sitti M
    Langmuir; 2009 Jun; 25(12):6607-12. PubMed ID: 19456091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Performance PEDOT:PSS/Single-Walled Carbon Nanotube/Ionic Liquid Actuators Combining Electrostatic Double-Layer and Faradaic Capacitors.
    Terasawa N; Asaka K
    Langmuir; 2016 Jul; 32(28):7210-8. PubMed ID: 27341344
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversible Wrinkling Surfaces for Enhanced Grip on Wet/Dry Conditions.
    Shin J; Lee JG; Lee G; Pikhitsa PV; Kim SM; Choi M; Choi YW
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48311-48320. PubMed ID: 36253341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tree frog attachment: mechanisms, challenges, and perspectives.
    Langowski JKA; Dodou D; Kamperman M; van Leeuwen JL
    Front Zool; 2018; 15():32. PubMed ID: 30154908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toward Bioinspired Wet Adhesives: Lessons from Assessing Surface Structures of the Suction Disc of Intertidal Clingfish.
    Sandoval JA; Sommers J; Peddireddy KR; Robertson-Anderson RM; Tolley MT; Deheyn DD
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45460-45475. PubMed ID: 32910638
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Marine-Inspired Polymers in Medical Adhesion.
    Balkenende DWR; Winkler SM; Messersmith PB
    Eur Polym J; 2019 Jul; 116():134-143. PubMed ID: 32831361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Air/Water-Permeable Hierarchical Mesh Architectures for Stretchable Underwater Electronic Skin Patches.
    Min H; Jang S; Kim DW; Kim J; Baik S; Chun S; Pang C
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14425-14432. PubMed ID: 32125136
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Yoo GY; Lee S; Ko M; Kim H; Lee KN; Kim W; Do YR
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49982-49991. PubMed ID: 33079523
    [No Abstract]   [Full Text] [Related]  

  • 59. Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions.
    Zhou Y; Chen M; Ban Q; Zhang Z; Shuang S; Koynov K; Butt HJ; Kong J; Wu S
    ACS Macro Lett; 2019 Aug; 8(8):968-972. PubMed ID: 35619479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
    Lee J; Fearing RS
    Langmuir; 2012 Oct; 28(43):15372-7. PubMed ID: 23072291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.