BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33523809)

  • 1. Variational Formulation of Unsupervised Deep Learning for Ultrasound Image Artifact Removal.
    Khan S; Huh J; Ye JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jun; 68(6):2086-2100. PubMed ID: 33523809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised CT Metal Artifact Learning Using Attention-Guided β-CycleGAN.
    Lee J; Gu J; Ye JC
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3932-3944. PubMed ID: 34329157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CycleGAN-based deep learning technique for artifact reduction in fundus photography.
    Yoo TK; Choi JY; Kim HK
    Graefes Arch Clin Exp Ophthalmol; 2020 Aug; 258(8):1631-1637. PubMed ID: 32361805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet subband discriminator for efficient unsupervised chest X-ray image restoration.
    Song J; Ye JC
    Med Phys; 2023 Apr; 50(4):2263-2278. PubMed ID: 36341576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal artifact reduction for practical dental computed tomography by improving interpolation-based reconstruction with deep learning.
    Liang K; Zhang L; Yang H; Yang Y; Chen Z; Xing Y
    Med Phys; 2019 Dec; 46(12):e823-e834. PubMed ID: 31811792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation.
    Oh G; Lee JE; Ye JC
    IEEE Trans Med Imaging; 2021 Nov; 40(11):3125-3139. PubMed ID: 34133276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADN: Artifact Disentanglement Network for Unsupervised Metal Artifact Reduction.
    Liao H; Lin WA; Zhou SK; Luo J
    IEEE Trans Med Imaging; 2020 Mar; 39(3):634-643. PubMed ID: 31395543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data.
    Chung H; Cha E; Sunwoo L; Ye JC
    Med Image Anal; 2021 Jul; 71():102047. PubMed ID: 33895617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised dual-domain disentangled network for removal of rigid motion artifacts in MRI.
    Wu B; Li C; Zhang J; Lai H; Feng Q; Huang M
    Comput Biol Med; 2023 Oct; 165():107373. PubMed ID: 37611424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images.
    Li Y; Li W; Xiong J; Xia J; Xie Y
    Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrospinal fluid flow artifact reduction with deep learning to optimize the evaluation of spinal canal stenosis on spine MRI.
    Kim UH; Kim HJ; Seo J; Chai JW; Oh J; Choi YH; Kim DH
    Skeletal Radiol; 2024 May; 53(5):957-965. PubMed ID: 37996559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-supervised learning for accelerated 3D high-resolution ultrasound imaging.
    Dai X; Lei Y; Wang T; Axente M; Xu D; Patel P; Jani AB; Curran WJ; Liu T; Yang X
    Med Phys; 2021 Jul; 48(7):3916-3926. PubMed ID: 33993508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
    Duong STM; Phung SL; Bouzerdoum A; Schira MM
    Magn Reson Imaging; 2020 Sep; 71():1-10. PubMed ID: 32407764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of Arterial-Phase Motion Artifacts in Gadoxetic Acid-Enhanced Liver MRI Using an Innovative Unsupervised Network.
    Pan F; Fan Q; Xie H; Bai C; Zhang Z; Chen H; Yang L; Zhou X; Bao Q; Liu C
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of Motion Artifact Generator for Deep Learning in Brain MRI].
    Tsukamoto H; Muro I
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(5):463-470. PubMed ID: 34011789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based metal artifact reduction using cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning.
    Koike Y; Anetai Y; Takegawa H; Ohira S; Nakamura S; Tanigawa N
    Phys Med; 2020 Oct; 78():8-14. PubMed ID: 32911374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.