These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 33523917)
1. Safe harbor-targeted CRISPR-Cas9 homology-independent targeted integration for multimodality reporter gene-based cell tracking. Kelly JJ; Saee-Marand M; Nyström NN; Evans MM; Chen Y; Martinez FM; Hamilton AM; Ronald JA Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523917 [TBL] [Abstract][Full Text] [Related]
2. Genome editing in human hematopoietic stem and progenitor cells via CRISPR-Cas9-mediated homology-independent targeted integration. Bloomer H; Smith RH; Hakami W; Larochelle A Mol Ther; 2021 Apr; 29(4):1611-1624. PubMed ID: 33309880 [TBL] [Abstract][Full Text] [Related]
3. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641 [TBL] [Abstract][Full Text] [Related]
4. Transposase-CRISPR mediated targeted integration (TransCRISTI) in the human genome. Rezazade Bazaz M; Ghahramani Seno MM; Dehghani H Sci Rep; 2022 Mar; 12(1):3390. PubMed ID: 35232993 [TBL] [Abstract][Full Text] [Related]
5. Longitudinal Visualization of Viable Cancer Cell Intratumoral Distribution in Mouse Models Using Oatp1a1-Enhanced Magnetic Resonance Imaging. Nyström NN; Hamilton AM; Xia W; Liu S; Scholl TJ; Ronald JA Invest Radiol; 2019 May; 54(5):302-311. PubMed ID: 30672844 [TBL] [Abstract][Full Text] [Related]
6. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish. Kawahara A Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258 [TBL] [Abstract][Full Text] [Related]
7. Development of Cellular Models to Study Efficiency and Safety of Gene Edition by Homologous Directed Recombination Using the CRISPR/Cas9 System. Sánchez-Hernández S; Aguilar-González A; Guijarro-Albaladejo B; Maldonado-Pérez N; Ramos-Hernández I; Cortijo-Gutiérrez M; Sánchez Martín RM; Benabdellah K; Martin F Cells; 2020 Jun; 9(6):. PubMed ID: 32570971 [TBL] [Abstract][Full Text] [Related]
8. Conversion Tract Analysis of Homology-Directed Genome Editing Using Oligonucleotide Donors. Kan Y; Hendrickson EA Methods Mol Biol; 2019; 1999():131-144. PubMed ID: 31127573 [TBL] [Abstract][Full Text] [Related]
9. Efficient targeted integration directed by short homology in zebrafish and mammalian cells. Wierson WA; Welker JM; Almeida MP; Mann CM; Webster DA; Torrie ME; Weiss TJ; Kambakam S; Vollbrecht MK; Lan M; McKeighan KC; Levey J; Ming Z; Wehmeier A; Mikelson CS; Haltom JA; Kwan KM; Chien CB; Balciunas D; Ekker SC; Clark KJ; Webber BR; Moriarity BS; Solin SL; Carlson DF; Dobbs DL; McGrail M; Essner J Elife; 2020 May; 9():. PubMed ID: 32412410 [TBL] [Abstract][Full Text] [Related]
10. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells. Li G; Zhang X; Zhong C; Mo J; Quan R; Yang J; Liu D; Li Z; Yang H; Wu Z Sci Rep; 2017 Aug; 7(1):8943. PubMed ID: 28827551 [TBL] [Abstract][Full Text] [Related]
11. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433 [TBL] [Abstract][Full Text] [Related]
12. Generation of Efficient Knock-in Mouse and Human Pluripotent Stem Cells Using CRISPR-Cas9. Anzai T; Hara H; Chanthra N; Sadahiro T; Ieda M; Hanazono Y; Uosaki H Methods Mol Biol; 2021; 2320():247-259. PubMed ID: 34302663 [TBL] [Abstract][Full Text] [Related]
13. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish. Albadri S; Del Bene F; Revenu C Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641 [TBL] [Abstract][Full Text] [Related]
14. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Suzuki K; Tsunekawa Y; Hernandez-Benitez R; Wu J; Zhu J; Kim EJ; Hatanaka F; Yamamoto M; Araoka T; Li Z; Kurita M; Hishida T; Li M; Aizawa E; Guo S; Chen S; Goebl A; Soligalla RD; Qu J; Jiang T; Fu X; Jafari M; Esteban CR; Berggren WT; Lajara J; Nuñez-Delicado E; Guillen P; Campistol JM; Matsuzaki F; Liu GH; Magistretti P; Zhang K; Callaway EM; Zhang K; Belmonte JC Nature; 2016 Dec; 540(7631):144-149. PubMed ID: 27851729 [TBL] [Abstract][Full Text] [Related]
15. From DNA break repair pathways to CRISPR/Cas-mediated gene knock-in methods. Rezazade Bazaz M; Dehghani H Life Sci; 2022 Apr; 295():120409. PubMed ID: 35182556 [TBL] [Abstract][Full Text] [Related]
17. Genome editing approaches with CRISPR/Cas9: the association of NOX4 expression in breast cancer patients and effectiveness evaluation of different strategies of CRISPR/Cas9 to knockout Nox4 in cancer cells. Javadi M; Sazegar H; Doosti A BMC Cancer; 2023 Nov; 23(1):1155. PubMed ID: 38012557 [TBL] [Abstract][Full Text] [Related]
18. Safe Harbor Targeted CRISPR-Cas9 Tools for Molecular-Genetic Imaging of Cells in Living Subjects. Dubois VP; Zotova D; Parkins KM; Swick C; Hamilton AM; Kelly JJ; Ronald JA CRISPR J; 2018 Dec; 1():440-449. PubMed ID: 31021241 [TBL] [Abstract][Full Text] [Related]
19. CRISPR Knock-Ins in Organoids to Track Tumor Cell Subpopulations. Cortina C; Cañellas-Socias A Methods Mol Biol; 2024; 2811():137-154. PubMed ID: 39037655 [TBL] [Abstract][Full Text] [Related]
20. Homology-independent multiallelic disruption via CRISPR/Cas9-based knock-in yields distinct functional outcomes in human cells. Zhang C; He X; Kwok YK; Wang F; Xue J; Zhao H; Suen KW; Wang CC; Ren J; Chen GG; Lai PBS; Li J; Xia Y; Chan AM; Chan WY; Feng B BMC Biol; 2018 Dec; 16(1):151. PubMed ID: 30593266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]