These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 33523917)
21. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system. Wu M; Wei C; Lian Z; Liu R; Zhu C; Wang H; Cao J; Shen Y; Zhao F; Zhang L; Mu Z; Wang Y; Wang X; Du L; Wang C Sci Rep; 2016 Apr; 6():24360. PubMed ID: 27063570 [TBL] [Abstract][Full Text] [Related]
22. Improving CRISPR-Cas9 directed faithful transgene integration outcomes by reducing unwanted random DNA integration. Hermantara R; Richmond L; Taqi AF; Chilaka S; Jeantet V; Guerrini I; West K; West A J Biomed Sci; 2024 Mar; 31(1):32. PubMed ID: 38532479 [TBL] [Abstract][Full Text] [Related]
23. Self-Cutting and Integrating CRISPR Plasmids Enable Targeted Genomic Integration of Genetic Payloads for Rapid Cell Engineering. Bloemberg D; Sosa-Miranda CD; Nguyen T; Weeratna RD; McComb S CRISPR J; 2021 Feb; 4(1):104-119. PubMed ID: 33616439 [TBL] [Abstract][Full Text] [Related]
24. [Recent developments in enhancing the efficiency of CRISPR/Cas9- mediated knock-in in animals]. Li GL; Yang SX; Wu ZF; Zhang XW Yi Chuan; 2020 Jul; 42(7):641-656. PubMed ID: 32694104 [TBL] [Abstract][Full Text] [Related]
25. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. Owen JR; Hennig SL; McNabb BR; Mansour TA; Smith JM; Lin JC; Young AE; Trott JF; Murray JD; Delany ME; Ross PJ; Van Eenennaam AL BMC Genomics; 2021 Feb; 22(1):118. PubMed ID: 33581720 [TBL] [Abstract][Full Text] [Related]
26. Towards mastering CRISPR-induced gene knock-in in plants: Survey of key features and focus on the model Physcomitrella patens. Collonnier C; Guyon-Debast A; Maclot F; Mara K; Charlot F; Nogué F Methods; 2017 May; 121-122():103-117. PubMed ID: 28478103 [TBL] [Abstract][Full Text] [Related]
27. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII. Eghbalsaied S; Kues WA Sci Rep; 2023 Feb; 13(1):2690. PubMed ID: 36792645 [TBL] [Abstract][Full Text] [Related]
28. The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing. Wu ZS; Gao Y; Du YT; Dang S; He KM Yi Chuan; 2023 Feb; 45(2):165-175. PubMed ID: 36927663 [TBL] [Abstract][Full Text] [Related]
29. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Gratz SJ; Ukken FP; Rubinstein CD; Thiede G; Donohue LK; Cummings AM; O'Connor-Giles KM Genetics; 2014 Apr; 196(4):961-71. PubMed ID: 24478335 [TBL] [Abstract][Full Text] [Related]
30. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Walther J; Porenta D; Wilbie D; Seinen C; Benne N; Yang Q; de Jong OG; Lei Z; Mastrobattista E Eur J Pharm Biopharm; 2024 Mar; 196():114207. PubMed ID: 38325664 [TBL] [Abstract][Full Text] [Related]
31. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments. Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591 [TBL] [Abstract][Full Text] [Related]
32. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335 [TBL] [Abstract][Full Text] [Related]
34. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459 [TBL] [Abstract][Full Text] [Related]
35. Zhou ZP; Yang LL; Cao H; Chen ZR; Zhang Y; Wen XY; Hu J Hum Gene Ther; 2019 Sep; 30(9):1101-1116. PubMed ID: 31099266 [TBL] [Abstract][Full Text] [Related]
36. An effective double gene knock-in strategy using small-molecule L755507 in the medaka fish (Oryzias latipes). Murakami Y; Kobayashi T Genesis; 2022 Feb; 60(1-2):e23465. PubMed ID: 35072325 [TBL] [Abstract][Full Text] [Related]
37. Cas12a mediates efficient and precise endogenous gene tagging via MITI: microhomology-dependent targeted integrations. Li P; Zhang L; Li Z; Xu C; Du X; Wu S Cell Mol Life Sci; 2020 Oct; 77(19):3875-3884. PubMed ID: 31848638 [TBL] [Abstract][Full Text] [Related]
38. A CRISPR/Cas9-Gal4BD donor adapting system for enhancing homology-directed repair. Zhang XJ; Xu K; Shen JC; Mu L; Qian HR; Cui JY; Ma BX; Chen ZL; Zhang ZY; Wei ZH Yi Chuan; 2022 Aug; 44(8):708-719. PubMed ID: 36384669 [TBL] [Abstract][Full Text] [Related]
39. CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Simora RMC; Xing D; Bangs MR; Wang W; Ma X; Su B; Khan MGQ; Qin Z; Lu C; Alston V; Hettiarachchi D; Johnson A; Li S; Coogan M; Gurbatow J; Terhune JS; Wang X; Dunham RA Sci Rep; 2020 Dec; 10(1):22271. PubMed ID: 33335280 [TBL] [Abstract][Full Text] [Related]
40. Endogenous protein tagging in medaka using a simplified CRISPR/Cas9 knock-in approach. Seleit A; Aulehla A; Paix A Elife; 2021 Dec; 10():. PubMed ID: 34870593 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]